GRASP
GRASP
Trust your results with GRASP. Reach enhanced productivity with fast and accurate design and analysis of competitive reflector antenna solutions.
Features
- Wizard for easy definition of single and dual reflector geometries
- Near-field and far-field calculations of vector fields
- Component library for common geometries, e.g. conic surfaces, general quadrics, radomes, panels, rectangular and circular struts
- Import of general reflector shapes from file
- Component library of mathematical feed models and import of general feed definitions from file
- Advanced GTD algorithm for large reflector and scattering problems
- Design tool for quasi-optical network and library of commonly used quas-optical components
- BoR-MoM for full-wave analysis of Bodies of Revolution
Values
- Seamless integration with TICRA Tools products
- Accurate analysis of reflectors
- Reliable results
- Increased productivity through efficient project file handling
- Easy to import feed data from other software vendors or test ranges
- Quick setup of complicated geometries
- Guided design of quasi-optical networks
Analysis and design of reflector antenna systems
Dedicated software for reflector systems, enabling fast and accurate analysis and design of the most advanced reflector antenna systems. Multiple antennas may be defined within the same project, and the general command structure enables the user to define which of those will be considered during a given analysis. This opens for the possibility of making advanced scattering analysis of clusters of antennas. GRASP offers an advanced PO algorithm as the baseline analysis method, supplemented by optional GTD and Moment Method solvers for advanced applications.
Easy definition of single and dual reflector geometries by built-in wizard
The intuitive wizard in GRASP allows for easy setup of single reflectors, Gregorian and Cassegrain systems as well as axially displaced dual reflectors. The wizard generates a good starting point for continued and more elaborate investigation of antenna designs. Further modifications may include changing the surface profile, the rim or edges, the surface material as well as adding other objects to simulate the antenna environment, investigating near fields and more.
Near-field and far-field analysis
The algorithms available for radiation pattern analysis applies equally well to field points in the far-field of the antenna as to points very close. In addition to presentation of standard far-field pattern cuts and contours, it is therefore also possible to inspect the near-field, for example to judge the planarity of an antenna's aperture field, or to visualize the field from one antenna on surrounding objects, antenna towers, etc.
General source models
Scattering between multiple objects
GRASP can perform analysis using geometrical theory of diffraction (GTD/UTD) on large and complex reflectors and constructions. At frequencies where the structure may be of thousands of wavelengths in diameter, the user can investigate the scattering between many objects. This applies equally well to large, ground-based telescopes and space-borne equipment.
Identify possible ray paths
A plot of the ray tracing will often reveal details about scattering mechanisms that are not obtainable through a PO analysis. GRASP uses a highly advanced ray-tracing approach to efficiently identify the possible ray paths in a given system.
Easy setup in frame designer
The frame designer enables the user to set up planar quasi-optical networks of components and subsequently optimize the components for minimum cross-polarization, maximum confocal distance, specific phase-front radius or phase slippage. Several frames can be created and connected to model beam waveguides which are not confined to a single plane.
Contact us
Miguel Fullana
- Head of Sales
- Tel.: +45 3334 6435
- E-mail: info@ticra.com