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Abstract—This paper introduces a data-driven meta-modelling
framework designed to optimize challenging antenna designs,
addressing the limitations of traditional gradient-based - and
global search methods. The framework utilizes Bayesian Op-
timization (BO) and High-Order Gaussian Processes (HOGPs)
to approximate black-box functions, substantially reducing the
reliance on full simulations. Two case studies that 1) optimises
a multi-section corrugated horn antenna and 2) balances gain
and return loss in a dual-reflector system, demonstrate the
framework’s effectiveness in handling complex design challenges,
offering a scalable and efficient tool for antenna engineers.

Index Terms—antennas, electromagnetics, surrogate modeling.

I. INTRODUCTION

Modern antenna design for space applications, such as
telecommunications or Earth observation, requires high-
precision fine-tuning of both geometric and material param-
eters to meet stringent performance specifications. This ne-
cessity becomes even more pronounced as the design process
advances, making it mission-critical to achieve absolutely
optimal performance. In many cases, the fine-tuning task
can effectively be addressed using advanced simulation-based
optimisation software. However, general-purpose optimization
algorithms, including gradient-based methods [1] and meta-
heuristics [2], [3], typically lack robustness and rely on a
large number of electromagnetic (EM) simulations to iden-
tify the optimal design parameters. These methods are often
challenged by the need of repeated simulations, complex
design landscapes and the need to manually adjust parameters
to reflect preferences and balancing multiple performance
criteria.

To address the challenges of conventional optimization
methods, this work proposes a data-driven meta-modelling
framework for black-box, compute-intensive antenna design
tasks. In this context, meta-modeling refers to machine
learning-based approximations to full-scale EM simulators,
built from carefully selected simulation data. The key benefit
is that meta-models can in many cases effectively replace true
EM simulations for practical purposes, offering significantly
faster evaluations while retaining sufficient accuracy [4]. The
proposed framework is aimed at tackling antenna design tasks
where conventional methods may struggle, particularly those
involving expensive black-box objective functions, unavailable

or costly derivatives, complex optimization landscapes with
multiple local optima, uncertain starting-guesses, and designs
that require consideration of multiple frequencies and criteria.

To allow antenna engineers to address such design tasks
more efficiently, the proposed framework uses Bayesian opti-
misation (BO), which is particularly well-suited for optimising
expensive black-box functions using low volume data [5],
[6]. Using BO, the framework offers a robust alternative to
conventional optimization methods by eliminating the need for
gradient information, making it well-suited for problems with
expensive objective functions and uncertain initial guesses.
Additionally, the meta modelling framework provides a more
sample efficient approach than global search methods, like
genetic algorithms or particle swarm optimization, offering
faster convergence and reduced computational costs. To show-
case the framework’s potential, this paper considers two case
studies. Case study I uses the framework to optimise a multi-
section corrugated horn antenna to be used in a Compact
Antenna Test Range (CATR) similar to HERTZ 2.0 [7], while
Case study II considers a multi-criteria design problem, where
the goal is to optimally balance the conflicting objectives of
gain and return loss for a dual reflector system. Case study I
aims to show the robustness of BO as a global optimiser, while
Case study II serves as a conceptual example of an antenna
design task, that would be both highly time-consuming and
cumbersome using traditional methods.

The paper is structured as follows: Section II introduces the
meta-modeling framework. Section III presents the CATR case
study, while Section IV covers the dual reflector, multi-criteria
design study. Section V draws overall conclusions.

II. META-MODELLING FRAMEWORK

The primary objective of the meta-modelling framework is
to address large-scale, black-box optimization problems of the
form:

minimize h (r (x))
subject to l ≤ x ≤ u

(1)

where x are the variables and l,u constitutes lower and
upper bounds. h is the scalarisation of the vector func-
tion, often taken to be the min-max, such that h (r(x)) =
maxi=1,...,M (ri(x)), and the residuals r are defined as

ri(x) = wi (gi − fi (x)) , i = 1, . . . ,M. (2)



Here, wi and gi constitutes the weight and goal-value of the
i’th residual. Most importantly, fi contains the performance
of interest, e.g. the sidelobe-level, gain, etc. While many
optimization problems (1) can be solved with conventional
gradient-based or global search algorithms, challenges arise
when dealing with expensive, black-box objective functions,
as these rely on repeated simulations to compute the residuals.
In such cases, first- and second-order derivatives may be
unavailable or costly to approximate, and the optimization
landscape might have multiple local optima. Moreover, if
changes in objective function h, weights (wi), or goals (gi)
are needed during the design process, the optimization must
be restarted, wasting expensive computations of the residuals
ri(x).

A. Meta-Modelling and Bayesian Optimization

To reduce the computational burden of solving compute-
intensive antenna design tasks, meta-modelling seeks to re-
place expensive black-box functions F : X ⊂ Ri → Ro

with a fast, cheap-to-evaluate approximation G(x) ≈ F(x),
enabling efficient exploration of the design space. Among
various meta-modelling techniques, Gaussian Processes (GPs)
[8] stand out for their ability to provide both predictions
and uncertainty estimates, making them ideal for optimisation
tasks. Concretely, Bayesian Optimization (BO) integrates GPs
into an iterative framework that efficiently explores the design
space by balancing exploration and exploitation. The key steps
in BO include (See Fig. 1):

Fig. 1. Bayesian Optimisation workflow

1) Initial Sampling: An initial set of sample points is gen-
erated, often using low-discrepancy sampling methods,
to cover the design space.

2) Meta-Model Construction: A meta-model is trained on
the initial data, modeling both the objective function and
the uncertainty in its predictions.

3) Active Learning: An acquisition function is used to
select the next sample points, balancing exploration
(sampling in high-uncertainty regions) and exploitation
(focusing on promising areas).

4) Iterative Refinement: The selected design is evaluated
using the true function, and the meta-model is updated
with the new data. This process repeats until conver-
gence or a stopping criterion is met.

B. Main Contributions

Although BO is a well-established concept [4], the primary
contribution of this work is the specific adaptation of meta-
modelling and BO for tackling challenging antenna design
tasks with many residuals, achieved through two key com-
ponents:

• High-Order Gaussian Processes (HOGPs) Unlike con-
ventional single-output GPs, which model h or treat
each output ri(x) independently, the work uses High-
Order Gaussian Processes (HOGPs) [9] to model multiple
outputs simultaneously, capturing complex correlations
between them. This approach significantly enhances the
efficiency and scalability of the meta-modelling frame-
work, particularly when dealing with thousands of resid-
uals, ri(x), as is often the case in antenna design tasks.

• Log Expected Improvement Acquisition Function An-
other key contribution of this work is the use of the
Monte Carlo (MC)-based Log Expected Improvement
(LogEI) acquisition function [10], [11]. LogEI addresses
the challenges of vanishing gradients in high-dimensional
spaces by transforming the Expected Improvement (EI)
function into log-space, thereby stabilizing gradient com-
putations and enhancing optimization performance in
complex design landscapes.

Overall, the proposed framework combines meta-modelling
with Bayesian Optimization (BO), leveraging HOGPs and
the robust LogEI acquisition function to efficiently tackle
large-scale, challenging antenna design problems. The novelty
lies in the multi-output modelling capability of HOGPs and
the numerically stable acquisition function, enabling BO to
explore and exploit complex design spaces with minimal
computational effort, making it a powerful tool for addressing
compute-intensive antenna design tasks with complex design
landscapes.

III. CASE STUDY I - BAYESIAN OPTIMISATION OF A
MULTI-SECTION CORRUGATED HORN ANTENNA

This case study applies the meta-modelling framework to
optimise a multi-section corrugated horn antenna to be used in
a typical Compact Antenna Test Range (CATR) [7]. The goal
of the optimisation is to shape the individual sections of the
horn to produce a flat-top radiating pattern in the broadband
range from 1.3-1.5 GHz. Coverage of multiple frequencies
is desired to allow for a single, multi-purpose device. The
use of a multi-section corrugated horn, as opposed to a
simple parameterized profile, is motivated by [12], showing
that multiple sections offer the designer sufficient degrees of
freedom to produce the desired board band flat-top radiation
pattern.
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Fig. 2. Profile of the intentionally suboptimal initial horn design to demon-
strate BO’s robustness.

A. Initial Horn Design

The corrugated horn antenna consists of six circularly
symmetric horn sections, defined using CHAMP3D [13]. The
seven circular waveguide ports connecting these sections are
characterized by radii ri, and each section has a length ℓj (See
Fig.2). Mode matching is applied to solve each section, while
the radiating aperture is efficiently analyzed using Body-of-
Revolution Method of Moments (BoR MoM) [14]. To demon-
strate the robustness of BO in handling poor initial conditions,
the case study focuses on an intentionally suboptimal design,
as shown in Fig. 2. This suboptimal design was generated by
perturbing the design variables from a previously optimised
structure.

B. Optimisation goals

The optimisation goal is to achieve a rotationally symmetric
flat-top radiation pattern around θ = 0 degrees, across a broad
range of operating frequencies. To this end, the RHC com-
ponents are optimised at three selected frequencies, f1 = 1.3
GHz, f2 = 1.4 GHz, and f3 = 1.5 GHz, to closely match the
target template shown in Fig. 3. The far-field is sampled with
a resolution of 1 degree for θ and 30 degrees for ϕ, resulting
in 120 sampling points per frequency, yielding a total of 720
residuals across the three frequencies. The design variables
subject to optimisation are r1, r2, r3, r4, ℓ1, ℓ2, ℓ3, and ℓ4, as
shown in Fig. 2. Table I lists the corresponding initial values
along with the lower - and upper bounds.

C. Results

The Bayesian Optimization (BO) algorithm is compared
to the state-of-the-art global optimization method, Multi-level
Coordinate Search (MCS) [15]. Both approaches are allocated
a budget of 100 true function evaluations. BO successfully
identifies the better design after 61 evaluations with a maxi-
mum deviation of 0.1531 dB from the goal template, whereas
MCS required 91 evaluations to find a suboptimal design with
a maximum deviation of 0.1782 dB. The resulting flat-top
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Fig. 3. The target goal template.

Variable name Initial value Lower bound Upper bound
r1 100 80 120
r2 145 110 180
r3 200 180 240
r4 330 200 460
ℓ1 400 280 520
ℓ2 800 600 1000
ℓ3 125 100 150
ℓ4 300 210 390

TABLE I
THE INITIAL VALUE AND BOUNDS FOR THE 8 OPTIMISATION VARIABLES.

ALL VALUES ARE IN MM .

radiation patterns are shown in Fig. 4 and Fig. 5 for BO and
MCS, respectively. It is clear that BO produces a pattern closer
to the goal template across the selected frequencies. The final
horn profile, optimised with BO, is shown in Fig. 6.

1,3 GHz → E_RHC → 0,0 deg [Magnitude]

1,4 GHz → E_RHC → 0,0 deg [Magnitude]

1,5 GHz → E_RHC → 0,0 deg [Magnitude]

Goal template

Field Plot for BO optimised horn design normalised to 0 dB
RHS components for φ = 0 degrees for all frequencies

M
ag

ni
tu

de
 [d

B]

-4,0

-3,0

-2,0

-1,0

0,0

1,0

2,0

θ [deg]
-15,0 -10,0 -5,0 0,0 5,0 10,0 15,0

Fig. 4. RHC components of the BO optimised horn.

IV. CASE STUDY II - MULTI-OBJECTIVE OPTIMISATION

To showcase the potential of the meta-modelling framework
to solve truly computationally expensive antenna design tasks,
this case study addresses the common challenge in antenna
design of balancing conflicting performance criteria. Specifi-
cally, the study focuses on optimizing a dual-reflector antenna
system consisting of two rotationally symmetric reflectors,
with a main reflector diameter of 1.5 m and a subreflector



1,3 GHz → E_RHC → 0,0 deg [Magnitude]

1,4 GHz → E_RHC → 0,0 deg [Magnitude]

1,5 GHz → E_RHC → 0,0 deg [Magnitude]

Goal template

Field Plot for MCS optimised horn design normalised to 0 dB
RHS components for φ = 0 degrees for all frequencies
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Fig. 5. RHC components of the MCS optimised horn.

Fig. 6. BO optimised horn profile.

diameter of 0.225 m (See Fig. 7). The system operates at 8
GHz and is modeled in CHAMP3D [13] using mode matching
for the horn interior and BoR MoM [14] for the horn exterior
and the reflectors, ensuring fast analysis.

A. Optimisation goal

The optimization task involves shaping the geometry of the
subreflector using eight design variables, where the primary
goal is to optimally balance the conflicting objectives of
gain and return loss. Traditionally, balancing these conflicting
objectives requires single-objective optimization, where the
engineer manually adjusts goal weights wi to reflect the rel-
ative importance of each performance criterion. This process
can be time-consuming and inefficient, as the engineer must
perform multiple optimization runs to explore the various
trade-offs reflected by wi. Additionally, choosing appropriate
weights is non-trivial, as the performance criteria often differ
in scale and units, making it challenging to accurately reflect
the engineer’s preferences. As a result, this approach becomes
computationally expensive, time-consuming and the manual
approach limits the ability to dynamically explore multiple
trade-offs during the optimization process. Ultimately, this
may lead to unexplored design options.

Fig. 7. Axially displaced ring focus dual-reflector system. The goal is to
shape the geometry of the subreflector using 8 design variables.

Fig. 8. The generated Pareto front of optimal trade-offs between gain
and return loss. Using a traditional algorithm, each point on the frontier
corresponds to a optimal design and would require a full optimisation to
compute.

B. Multi-criteria formulation using meta-models

The meta-modelling prototype overcomes the limitations of
traditional methods by combining meta-models with multi-
objective optimization. In this case study, the NSGA-II multi-
objective algorithm [16] is combined with a meta-model to si-
multaneously find all optimally balanced trade-offs, providing
the engineer with the complete overview for different designs.
To make the computation feasible in practice, the idea is to
only use true function evaluations, whenever the meta-model
is uncertain in its predictions, thereby significantly reducing
computational complexity.



C. Results

The results, as shown in Fig. 8, demonstrate the wide
range of potential trade-offs between gain and return loss,
known as the Pareto front. In a conventional setup, generation
of the frontier will often be practically intractable as each
data point represents a full single-objective optimisation. In
contrast, the combination of NSGA-II and meta-modelling
allows the engineer to perform visual inspection of the frontier,
providing a near complete picture of the possible trade-offs.
For instance, improving the gain by approximately 0.8 dB can
be achieved by accepting a reduction in return loss of around
1 dB. Of the 4000 evaluations required by NSGA-II, only 134
needed full simulations, while the remaining 3866 evaluations
were handled by the GP meta-model. This approach reduced
computational costs by 97%, making the exploration of com-
plex design spaces both feasible and efficient.

V. CONCLUSION

In conclusion, the proposed meta-modelling prototype of-
fers a robust and efficient alternative to traditional optimiza-
tion methods, particularly for antenna design problems with
expensive, black-box objective functions and poor starting
guesses. By leveraging BO with HOGPs, it enables efficient
exploration of complex, multi-residual designs, outperforming
global methods. While BO excels in challenging scenarios,
it is not to be considered a silver bullet. In fact, local
optimization remains preferable when good starting points or
derivative information are available, and global methods are
more practical for inexpensive, well-constrained problems. As
such, BO is meant to fill the critical gap for handling complex
antenna design tasks where conventional methods fall short.

Overall, the case studies demonstrate the significant poten-
tial of the meta-modelling framework to expand the scope of
antenna designs that can be explored within practical time
frames. By allowing engineers to efficiently balance multiple
performance criteria with minimal computational overhead,
the framework offers a scalable solution for addressing com-
plex optimization challenges in antenna design, where con-
ventional algorithms are often found to struggle or become
cumbersome.
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