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Abstract—The Higher-Order Array Decomposition Method
(HO-ADM) is extended to handle fully populated or thinned
finite array antennas and scatterers which can be modeled
as arrays with connected elements lying on a regular lattice.
The Discontinuous Galerkin Method (DGM) is employed to
retain the multi-level block-Toeplitz Method of Moments (MoM)
matrix structure even for connected elements. Moreover, by
zeroing a selected subset of unknowns in the iterative solution
process, thinned arrays can be handled as well. The presented
method yields more than an order of magnitude shorter solution
times for both a 32× 32-element square- and a 793-element
circular-thinned array with a memory consumption comparable
to existing fast methods such as MLFMM.

Index Terms—thinned array antennas, connected array ele-
ments, multi-level block-Toeplitz, discontinuous Galerkin method
of moments, higher-order basis functions

I. INTRODUCTION

ARRAY antennas have become a key component in numer-
ous wireless communication and sensing applications.

Phased array antennas are becoming an imperative part of
next-generation space payloads and user terminals as they offer
in-orbit reconfigurability and electronically steerable beams.

In order to accommodate the stringent performance re-
quirements for space applications, future array antennas will
be electrically and physically large with numerous densely
packed array elements. Their performance is difficult to predict
using traditional computational techniques such as embedded
element patterns, primarily due to the inaccurate modeling
of mutual coupling and edge effects. In addition, the larger
number of needed unknowns challenges traditional full-wave
numerical methods regarding memory consumption and solu-
tion time. This difficulty is further compounded when seeking
an efficient solution for large finite arrays characterized by
a thinned lattice, geometrically interconnected elements, and
different element geometries.

For the conventional full-wave Method of Moments (MoM)
for surface integral equations, the memory consumption and
computational complexity scales as O(N2) and O(N2) −
O(N3), respectively, where N is the number of unknowns.
Although MoM is considered accurate in the sense that it
rigorously takes into account mutual coupling and edge effects,
its computational scaling is prohibitively large for the design
of future electrically large but finite array antennas.

Several classes of integral-equation-based methods enable
efficient full-wave analysis of electrically large arrays, in
which the memory scaling and computational complexity can
be reduced to as low as O(N logN) by means of error-
controllable approximations.

One class is the multipole-based methods such as the
Multi-Level Fast Multipole Method (MLFMM) [1], [2] which
is a widely used error-controllable full-wave method for
electrically large structures [3], [4], [5]. Nevertheless, sub-
wavelength array element sizes and spacings pose a challenge
in conventional MLFMM which in addition does not exploit
the typical periodic nature of arrays [6].

A second class of methods is based on MacroBasis Func-
tions (MBFs) such as characteristic basis functions (CBF) [7],
[8], synthetic basis functions (SBF) [9] and accurate subentire-
domain (ASED) [10] basis functions, which are all able to
drastically reduce the number of unknowns in the MoM by
aggregating many elementary basis functions (BFs) into fewer
groups. Nevertheless, the generation and number of MBFs to
include is in general problem specific, making the asymptotic
scaling difficult to predict.

A third class of methods including the fast Integral Equa-
tion Solver (IES) [11], Integral Equation QR algorithm (IE-
QR) [12] and Adaptive Cross Approximation (ACA) [13] is
based on lossy matrix compression. These methods can be
regarded as algebraic in nature, in that they work by cleverly
grouping and/or by factorization of unknowns with the aim
of improving the compressibility of the system matrix and
accelerating the simulation speed. Similar methods denoted as
fast direct solvers are also based on compression, but focus
strictly on efficient factorization and direct solution of the
linear system [14], [15].

A fourth class of full-wave methods exploits the circular
convolution theorem which allows the use of a Fast Fourier
Transform (FFT) to accelerate the solution process. Examples
are the Adaptive Integral Method (AIM) [16], [17], the pre-
corrected Fast Fourier Transform method (pFFT) [18], the In-
tegral Equation Fast Fourier Transform method (IE-FFT) [19].
In order to utilize the FFT, these methods require a regular
lattice onto which the unknowns are projected.

We note that complementary methods based on the Domain
Decomposition Method also allow for a very memory-efficient
analysis of large finite arrays [20], [21], performing particu-
larly well when combined with the Finite Element Method
(FEM) in case of arrays with complicated stack-ups. On the
other hand, integral-equation-based methods have a distinct



2

advantage in inherently satisfying the open boundary radiation
condition, eliminating the need for less rigorous absorbing
boundary conditions.

Although the above-mentioned methods employ physically
and/or analytically-based approximations, most of them are
error controllable, making them well-suited to accelerate the
analysis of general electrically large arrays. Nevertheless,
when array elements are placed on a regular lattice the com-
putation efficiency can be improved without compromising
accuracy by employing the Array Decomposition Method
(ADM) [22]. The ADM exploits the translational invariance
of the 3D free-space Green function in connection with
the regular geometrical lattice (e.g. rectangular, hexagonal
or circular) of the array elements and consecutively ordered
basis functions, allowing an FFT-accelerated matrix-vector
product (MVP) [22], [23] in an iterative solution process. At
the penalty of approximation, the ADM can be extended using
FMM, yielding O(N) memory consumption and a solution
time which can be faster than that of ADM alone, provided that
the number of far-field directions used in the basis function
expansions is less than the number of unknowns on each array
element [24].

Recently, the boundary integral part of ADM has been im-
plemented with higher-order (HO) basis functions and shown
to use significantly less unknowns for a given accuracy [25].
The present work concerns two further extensions to the
full-wave Higher-Order Array Decomposition Method (HO-
ADM) [25] for array antennas or scatterers with arbitrary
perfect electrically conducting (PEC) volumetric antenna el-
ements. In this paper, the HO-ADM is extended to allow for
conduction currents between connected elements, and thus al-
lowing for arrays with a ground-plane or other interconnecting
features. A second extension is that the regular lattice does not
need to be fully populated with identical array elements, hence
permitting thinned arrays. The two extensions presented in this
work allow for significant computational and memory savings
in the HO-ADM when applied to connected and thinned
arrays. This includes such challenging cases as, but not limited
to, circular arrays, arrays with a finite ground-plane extending
beyond the bounds of the array, and even scatterers which can
be modeled as finite arrays such as a PEC plate, a cylinder,
or other 2D profiles that can be extruded and modeled as an
array.

The paper is organized as follows. Section II reviews the ba-
sic HO-ADM. Section III discusses the necessary extensions to
HO-ADM to be able to analyze connected and thinned arrays.
Section IV presents various numerical examples validating
the capabilities of the extended HO-ADM. Lastly, conclusions
are given in Section V. Time-harmonic variation and phasor
notation is employed throughout the manuscript.

II. HIGHER-ORDER ARRAY DECOMPOSITION METHOD

This section summarizes the HO-ADM [25], in which the
mixed-potential electric field integral equation (EFIE), as well
as the combined field integral equation (CFIE) for closed
surfaces [26] have been employed.

A. Surface Discretization and Basis Functions

Curved quadrilaterals (i.e. mesh-cells), henceforth referred
to as quads, with parametrization r⃗(u, v) are used to discretize
the geometry [27], using the HO-hierarchical Legendre BFs
from [26] to expand the surface current density as

J⃗(u, v) =
e⃗u

JS(u, v)

Mu∑
m=0

Nv∑
n=0

Cuv
mnP̃m(u)Pn(v)α

u
mn+

e⃗v
JS(u, v)

Mv∑
m=0

Nu∑
n=0

Cuv
mnP̃m(v)Pn(u)α

v
mn, (1)

in which {u, v} are curvilinear coordinates, α
{u,v}
mn are the

unknown current coefficients in the {u, v}-direction, e⃗{u,v} =
∂r⃗

∂{u,v} are unitary vectors, JS is the Jacobian determinant, Pn

are Legendre polynomials of order n and Cuv
mn are constants

chosen to minimize the MoM matrix condition number. P̃m

are modified Legendre polynomials defined as

P̃m(u) =


1− u, m = 0
1 + u, m = 1

}
Doublets

Pm(u)− Pm−2(u), m ≥ 2 Singletons
,

(2)

used only in the direction of the current. Herein, doublets
correspond to the usual roof-top continuity-enforcing BFs
having support over two quads. Singletons model local current
density variations and have support only within a single
quad. Other BF-formulations, e.g. Rao-Wilton-Glisson BFs
on triangular cells can be used as well. Nevertheless, by
using quads (instead of triangular cells) only two vectors
(instead of three) are needed to represent the current, which,
combined with the choice of the HO BFs in (1), enables better
accuracy for the same number of unknowns [28]. In addition,
since it is a hierarchical basis, the maximum polynomial order
N{u,v} = M{u,v}−1 for the current expansion in the {u, v}-
direction can be chosen independently for each quad based on
its electrical size.

B. Accelerated Matrix-Vector Product

For an array of antennas or scatterers with identical elements
placed on a d-dimensional regular lattice, the total number of
unknowns N can be formulated as

N = s

d∏
i=1

ni = sT , (3)

where s is the total number of unknowns on each array
element, T is the total number of array elements and ni is
the number of elements in the ith lattice dimension. Due to
the translational invariance of the three-dimensional free-space
Green function, the regular lattice on which array elements are
placed, as well as consecutively ordered BFs, the MoM matrix
A ∈ CN×N becomes a multi-level asymmetric block-Toeplitz
matrix of d+1 levels as depicted in Fig. 1b for a T = 2×3 = 6-
element array. That is, A consists of nd × nd block-Toeplitz
(BT) matrices which themselves consist of nd−1 × nd−1

BT sub-blocks, and so forth for the number of array lattice
dimensions d. By using the HO-hierarchical Legendre BFs
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from (1), the inner-most level contains asymmetric square
matrices a ∈ Cs×s comprising basis/test function interactions.
The unknowns associated with a given array element at lattice
position (a, b) is denoted as x⃗a,b, where a ∈ {1, . . . , n1} and
b ∈ {1, . . . , n2}.

In order to achieve an FFT-accelerated MVP, the sub-blocks
at each level are extended from Toeplitz to circulant [29, sec.
4.7.7] as exemplified in Fig. 1 going from (b)→ (c). The
resulting extended MoM matrix, AC , formally increases the
number of unknowns to Ñ = s

∏d
i=1(2ni − 1), and merely

serves as a mathematical trick since it does not require any
zero-padding of A nor additional computation. This is evident
from Fig. 1c, where the rearrangement of the blocks ak,l
suffices. Herein k ∈ {1, . . . , 2n1−1} and l ∈ {1, . . . , 2n2−1}
enumerate the rearranged blocks at the first (i = 1) and second
(i = 2) block-circulant level, respectively.

To ensure that the MVP with the extended MoM matrix
ACx⃗ C contains entries equal to the original MVP, the un-
known vector x⃗ ∈ CN×1 is extended to x⃗ C ∈ CÑ×1 as illus-
trated in Fig. 1c. Zeroes are placed at the positions pertaining
to the extended blocks, i.e. x⃗k,l = 0 for k > n1 ∧ l > n2.
The MVP ACx⃗ C favorably becomes a discrete circular block
convolution operation which can be accelerated via the FFT.

In conclusion, the computational complexity of the HO-
ADM becomes O(s2T ) in setup time and O(s2T log(T )) for
the MVP. The memory consumption is O(s2T ). Note that
the quadratic scaling with s is a consequence of permitting
a general matrix ak,l at the inner most level. Nevertheless,
by employing the HO-hierarchical BFs, s can be kept low
(compared to ordinary first-order BFs) without impacting the
solution accuracy [25].

III. EXTENDED ARRAY DECOMPOSITION METHOD

In the existing HO-ADM no conduction current is allowed
to flow between adjacent array elements, effectively excluding
arrays with a ground-plane or other interconnecting features.
Another restriction is that the regular d-dimensional lattice
has to be fully populated with identical array elements. In
this section two contributions to the existing HO-ADM are
presented enabling it to handle electrically connected and
thinned arrays. From this point, HO-ADM will refer to the
extended method.

A. Extension to Thinned Arrays

Thinned array antennas are obtained by terminating or
removing elements from uniformly spaced arrays [30]. The
main motivation for thinning array antennas is the achievable
reduction in cost and weight, without compromising desired
performance parameters such as gain, beamwidth, or side lobe
level. Another incentive for thinning can be spatial constraints,
where the outer elements in a regular array need to be removed
to conform to a given rim. In the remainder of this paper, the
term thinning will refer to the removal of elements.

The challenge in retaining an FFT-accelerated MVP, when
array elements are removed, is that the multi-level block-
Toeplitz (MBT) property of the system matrix is lost. The

Fig. 1: Example of (a) T = 2×3 = 6-element generic array, (b) the resulting
multi-level block Toeplitz MoM matrix A with N = sT unknowns, (c) its
full circulant extension AC with Ñ ≈ 2dN unknowns and (d) the thinned
MoM matrix At after removing element four (E4). Colors indicate similar
interaction matrices, while faint colors indicate blocks that do not need to
be computed nor stored. A wavy pattern indicates blocks that have to be
computed if the employed integral operators are not symmetric. In case of
symmetric operators their calculation can be omitted.
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thinned MoM matrix At ∈ CN t×N t
results in the reduced

system

Atx⃗ t = b⃗ t, (4)

where x⃗ t ∈ CN t×1 is the resulting thinned unknown vector,
b⃗ t ∈ CN t×1 is the thinned right-hand side, and N t is the total
number of unknowns after thinning the array. Fig. 1d shows
an example where the removal of array element number four
(E4) and its associated unknowns x⃗2,2 results in the deletion
of both a block-row and -column which in turn destroys the
MBT structure.

Instead of removing elements from A, one remedy to
maintain the MBT structure is to keep A as is, but employ
zeroing of the unknown vector and the MVP result. Herein
the full length of the unknown and right-hand side vectors
is retained, while the unknowns and MVP entries associated
with removed elements are forced to zero. Mathematically, the
MVP for the thinned system can be formulated as

Atx⃗ t = Za,b{AZa,b{x⃗i}}, (5)

where Za,b is a zeroing function placing zeros at those
positions (a, b) in the vector which pertains to the removed
array element(s) and x⃗i ∈ CN×1 is the ith iteration solution
vector guess. Because Za,b{x⃗i} is of full length N , it can be
multiplied on the full MoM matrix A possessing the MBT
property, effectively preserving the FFT-acceleration.

The zeroing of unknowns pertaining to e.g. element number
four (E4) via Z2,2{x⃗i}, being equivalent to x⃗2,2 = 0, effec-
tively removes the influence of the blocks in column number
four as illustrated with the vertical red dashed rectangle in
Fig. 1d. From an electromagnetic perspective, zeroing basis
function coefficients Z{x⃗i} in each iteration can be interpreted
as enforcing zero current flow on removed element(s). Remark,
however, that this does not eliminate the corresponding block-
row number four, which represents the coupling from all other
elements to the removed element. Therefore, to also remove
the influence of the row, the MVP result AZ2,2{x⃗i} should
be zeroed as well, as indicated with the horizontal red dashed
rectangle in Fig. 1d.

In addition, the right-hand side vector b⃗ must be zeroed
accordingly in order for the iterative solver to calculate the
correct residual vectors r⃗i, that is

r⃗i = Za,b{b⃗} − Za,b{AZa,b{x⃗i}}. (6)

Zeroing the resulting MVP, i.e. Z{AZ{x⃗i}}, can be under-
stood as not letting the coupling field from all other elements
induce any current on the removed element(s). In short, by
appropriately zeroing, the iterative solver will converge to the
same solution as if the ordinary MVP Atx⃗ t was applied for
the truncated system.

B. Extension to Electrically Connected Arrays

The MBT property of A is lost in the case of electrically
connected array elements. This is because the doublet basis
function coefficients α0n, α1n on connected edges have to
be associated with either one or the other array element.
In order to overcome this limitation, the Discontinuous

Fig. 2: Two patch elements at the corner of a larger ground-plane-connected
array. Half-doublet BFs are introduced on either side of the boundaries be-
tween adjacent elements. Dummy unknowns, which are appropriately placed
half-doublets, are added on external edges to retain the MoM matrix MBT
property (see Section III-B2).

Galerkin Method (DGM) for surface integral equations is
employed [31].

1) Discontinuous Galerkin Method: The DGM is com-
monly recognized for its ability to handle non-conformal
meshes of complex targets comprising mesh elements of
a wide range of electrical sizes, resulting in a significant
reduction in memory consumption and solution time [32],
[33], [34]. In the present contribution yet another application
of the DGM is presented to retain the MBT MoM matrix
A. Quite recently, the DGM has been applied to finite array
analysis [10], but not in the context of retaining the MBT
property of the MoM matrix to facilitate the use of an FFT-
accelerated MVP.

The essence of DGM is that current continuity is weakly
enforced via an extra surface integral penalty term albeit at
the cost of an increased condition number of A [31]. For this
reason, it was proposed in [31] to stabilize the resulting DGM
MoM matrix and provide practical iterative convergence with
an extra boundary interior penalty stabilization function IIP(β)

IIP(β) =
β

k2

∫
Cpq

[n̂p· f⃗mt (⃗r)][n̂q· f⃗nb (⃗r)]d⃗r, (7)

in which β = 1
10h is a scalar depending on the average

electrical mesh size h, k is the wavenumber, f⃗mt is the mth

test function, f⃗nb is the nth basis function and r⃗ is a position
vector along the common edge Cpq between quads p and q
with in-plane outward normal unit vectors denoted as n̂p and
n̂q , respectively (see Fig. 2).

In the HO-ADM, exclusion of this interior boundary penalty
term is paramount because including it destroys the MBT
property of A. This is due to the opposite signs of the two
normal vectors n̂{p,q} when evaluated along the common edge
Cpq . Note that IIP is merely responsible for stabilization and
that its exclusion is feasible provided proper preconditioning
is employed [35], [36], [33].

2) Application of DGM in HO-ADM: With the DGM at
hand, Fig. 2 illustrates how the above outlined approach is
only applied at the electrically connected boundaries between
array elements. More specifically, the half-doublet BFs are
placed only at edges associated with two quads which lie on
two different array elements. As a consequence, twice the
number of doublet unknown coefficients are introduced, but
only at those edges which connect different array elements.
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Fig. 3: Ground-plane of the array from Fig. 2 using, for illustration, T =
2× 2 = 4 elements with (a) DGM applied at differently oriented connected
edges resulting in dissimilar MoM matrix self-interaction blocks and (b) with
dummy BFs (half-doublets) appropriately placed at external edges in order
to make self-interaction blocks equal. In this way, the full MoM matrix A
retains its multi-level block Toeplitz property.

In the case of the patch array in Fig. 2, this means that DGM
only has to be applied at the ground-plane edges. Note that
this allows for normal divergence-conforming and inherently
continuity-enforcing BFs between all other quads inside the
array-elements.

Hence, by the use of half-doublets, the basis function
coefficients can be distributed evenly between array element
matrices ak,l in A, while the DGM maintains current continu-
ity. The MoM matrix is, however, not yet fully BT because the
array elements do not possess the same amount nor the same
enumeration of BFs. Since DGM only needs to be applied at
edges which connect different array elements, we focus now
only on the ground-plane of the patch array of Fig. 2, which is
illustrated in Fig. 3 for clarity reasons. Herein, the DGM has
been used to place half-doublets on each of the connecting
edges on the ground-plane between the four array elements.
However, because these half-doublets are placed at differently
oriented edges (indicated with colors), the resulting MoM self-
interaction matrix blocks are no longer equal, despite having
many basis function self-interactions in common (indicated in
gray). Consequently, retaining the MBT property of A is not
possible with the DGM alone.

3) Dummy Unknowns: To this end, a number of dummy
BFs need to be added to the ground-plane on those array ele-
ments which are placed along the edges of the array. Here, one
solution is to introduce half-doublets on all external edges, i.e.
edges which are only associated with one quad, as illustrated

in Fig. 3b. By doing so, self-interaction blocks for all array
elements become equal, and the MBT property of A can be
retained. Note that unlike the formally added unknowns Ñ due
to the circulant extension, the additional dummy unknowns
involve some overhead since they have to be computed and
stored. Therefore, in the HO-ADM only strictly necessary
external edges are identified on which dummy unknowns have
to be placed.

Although the addition of dummy unknowns together with
the DGM retains the MBT MoM matrix, the additional un-
knowns placed at external edges alter the Krylov subspace
and subsequently the obtainable solution. It is therefore of
paramount importance to exclude dummy basis function co-
efficients from the iterative solver. Fortunately, the technique
of Section III-A can also be employed here to effectively hide
dummy unknowns from the iterative solver’s perspective, such
that the underlying Krylov subspace remains unchanged. As
such, dummy unknowns are never solved for and merely serve
to preserve the MBT property of A for retaining a fast MVP.

After employing the DGM and adding required dummy
unknowns, the total number of unknowns N† can be approx-
imated as

N† = [s+ κ(s)]T, (8)

where κ(s) ∈ {0, . . . , s} is the average number of BFs
connecting two array elements. For example, if half of the BFs
on an array element is electrically connected to a neighboring
element

(
i.e. κ(s)

s = 0.5
)

, we would need 50 % more un-
knowns. Nevertheless, for practical antenna arrays the amount
of connected edges and thus doublet BFs between array
elements is considerably smaller than the number of BFs on
each array element (i.e. κ(s) ≪ s), hence N† ≈ N .

In summary, by employing half-doublets only at connected
boundaries between array elements (i.e. only on the ground-
plane for the patch array of Fig. 2), using the DGM to enforce
current continuity and by introducing dummy unknowns which
are hidden from the iterative solver, electrical conduction
currents are allowed to flow between array elements while
retaining the MBT property of the MoM matrix, permitting
an FFT-accelerated MVP.

C. Required Preconditioning Strategy

In this section, a necessary preconditioning strategy is
presented in order to arrive at an effective solver for the HO-
ADM in the case of connected arrays. A left-preconditioned
linear system of equations is assumed, with a relative error ϵ
defined as

ϵ =

∥∥∥P -1
[
b⃗−Ax⃗i

]∥∥∥
2∥∥∥P -1b⃗

∥∥∥
2

, (9)

in which P represents a block-diagonal (BD) preconditioning
matrix with (PC) or without (PNC) coupling terms from nearby
array elements. Note that P is never formed explicitly nor
applied to A directly.

Due to the inherent MBT structure of A, a constant-memory
block-diagonal preconditioner has been shown to be effective
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Fig. 4: Unique interaction groups required to build the constant memory NF-
coupling preconditioner for the example of a 6× 6 element (a) unconnected
array (b) connected array and (c) connected and thinned array. DGM half-
doublet BFs are placed at connected edges marked in blue. Faint colors
indicate groups that do not need to be computed nor stored.

for the Array Decomposition Method [22]. Herein, an LU-
factorization of the interaction matrix of a single array element
is used in a BD preconditioner, which will be referred to as
PNC. However, in the case of connected arrays in the HO-
ADM, a preconditioner not including coupling with nearby
array elements no longer suffices. This is mainly due to the
now closely coupled half-doublet BFs but also due to the
excluded interior stabilization term IIP.

1) Constant-Memory NF-Coupling Preconditioner: To
overcome the bad iterative convergence when array elements
become electrically connected, a NF-coupling BD precondi-
tioner, PC, is needed. Nevertheless, an inherent challenge with
BD preconditioners including coupling is that each block along
the main diagonal has to be stored. For the HO-ADM, doing
so would mean that the preconditioner memory consumption
would become proportional to the number of array elements T
and even comparable to the storage of the unique interaction
matrices ak,l. However, in case of regular arrays a unique
set of basis function preconditioner groups can be identified
as depicted in Fig. 4 for the example of an unconnected,
connected and simultaneously thinned and connected 6 × 6
element array.

In the simple case where elements are not electrically
connected, only one interaction group, comprising the self-
interactions of a single array element, needs to be computed
and stored as illustrated in Fig. 4a. This corresponds to the
previously discussed no-coupling preconditioner PNC. By real-
izing that redundant groups exist for connected arrays as well,
we have in practice only nine unique preconditioner groups
[I, T, D, L, R, TL, TR, DL, DR] as illustrated in Fig. 4b, in
which letters {(I)nner, (T)op, (D)own, (L)eft, (R)ight} are used

Fig. 5: Performance of the constant memory NF-coupling (CNF) precon-
ditioner compared to the common block-diagonal preconditioner without
coupling; both applied to the case of a normal-incident plane wave on
ground-planes (PEC square plates) of different sizes which are constructed
by electrically connecting (1λ)2 quadrilateral mesh cells using HO-ADM.
The wavelength is fixed to 1.0m and the size is varied. For reference, the
MLFMM result is presented only for the computationally most demanding
case of the (400λ)2 plate.

to distinguish unique interaction groups, and simultaneously
indicate the positions of external edges for a given group. If
we, in addition, allow array thinning, we can still identify a
finite but slightly larger set of 16 unique preconditioner groups
for a rectangular lattice as seen in Fig. 4c. Consequently, it is
possible to construct a constant-memory NF-coupling (CNF)
preconditioner PC for simultaneously connected and thinned
arrays, by only computing and storing at most 16 unique
interaction matrices.

The CNF preconditioner PC is constructed by LU-
factorization of at most 16 unique interaction matrices, where-
after they can be applied in parallel on the complete array
by simple forward/backward substitutions on the associated
right-hand side (b⃗) entries. Remark that building the required
preconditioner groups (including coupling) requires no re-
computation since all interaction information is already con-
tained in the storage of ak,l.

In Fig. 5, the relative residual error versus the number of
iterations is plotted, for comparison purposes, for the simple
case of plane-wave scattering from a ground-plane (i.e. square
PEC plate) of various electrical sizes modeled by connecting
many smaller (1λ)2-sized plates, where λ is the wavelength.
For ground-plane sizes up to around (100λ)2, the no-coupling
preconditioner PNC converges similarly as the system with-
out preconditioning. For a (400λ)2-ground-plane comprising
6.4 million (M) unknowns, the no-coupling preconditioner
converges to a residual error of 10−3 after 1448 iterations,
whereas no preconditioning stagnates at over 3200 iterations.
Interestingly, it is noted that for all considered ground-plane
sizes ranging from (10λ)2 to (400λ)2, the residual error
starts out being significantly higher with the no-coupling
preconditioner compared to not applying a preconditioner at
all. Only for small ground-planes, e.g. (10λ)2 and (20λ)2, is
the final number of iterations of the no-coupling preconditioner
better than not applying any preconditioning. This impeded
effectiveness of PNC makes sense if we perceive the connected
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(a)

(b)

Fig. 6: Normalized scattered far-field ϕ = 180◦-cut for an obliquely incident
(θi = 30◦, ϕi = 0◦) plane wave on a (40λ)2-sized PEC square plate
comparing the HO-ADM and HO-MoM. The blue marking is a view of the
range θ = [20◦, 40◦] with the same y-axis dynamic-range as the full plot.

array using DGM as the limiting case of unconnected array
elements moving closer to each other, since PNC effectively
assumes an uncoupled array problem.

Instead, by applying the NF-coupling preconditioner PC,
a residual error of 10−3 is reached after 17 iterations for
a (10λ)2-ground-plane compared to 185 iterations for the
simple PNC preconditioner. The efficacy is even clearer for
the larger (400λ)2-ground-plane for which the number of
iterations reduces from 1448 to 41 iterations by employing
PC. For reference, comparison with a HO-MLFMM imple-
mentation which converges after 51 iterations for the (400λ)2-
ground-plane establishes the efficacy of PC. Here it should be
stressed that the HO-MLFMM implementation also employs a
coupling preconditioner and that HO-MLFMM uses a flexible
generalized minimal residual (GMRES) solver including inner
and outer iterations. Therefore, to make a fair comparison with
HO-MLFMM, only outer iterations have been allowed.

IV. VALIDATION EXAMPLES

Numerical experiments are performed to demonstrate the
validity and efficiency of the presented HO-ADM. Results
have been generated on a computer with an Intel® Core® i7-
9850H CPU @ 2.6GHz with 6 cores and 32GB of RAM, un-
less otherwise stated. The GMRES iterative solver is employed
with Krylov subspace maximum dimension of 300 and relative
residual error tolerance of 10−3. Comparisons are made with
the full-wave solver in ESTEAM [37] which is based on a
state-of-the-art HO-MoM/MLFMM implementation [26], [38].
In the following, total solution time includes the generation

Fig. 7: Comparing HO-ADM with HO-MLFMM/HO-MoM in terms of (a)
total memory consumption and (b) total solution time for the case of obliquely-
incident (θi = 30◦) plane-wave scattering of various electrically large PEC
plates (up to an area of (620λ)2 corresponding to ca. 15 million unknowns).
– The wavelength is fixed to 1.0m and the size is varied. Markers do not
reflect number of data points.

of BFs, the calculation of and the block-FFT across unique
interaction blocks, the preconditioner generation, and the iter-
ative solution time. Total memory consumption refers to the
storage of required matrices, the Krylov subspace, as well as
the preconditioner. An Equivalent Relative Error (ERE) is used
to compare HO-ADM with HO-MLFMM

ϵERE =

√√√√∑Ns

i=1 |Ei,ADM −Ei,MoM/MLFMM|2∑Ns

i=1 |Ei,MoM/MLFMM|2
, (10)

where EADM and EMoM/MLFMM are the electric far-field
vectors for HO-ADM and HO-MoM/MLFMM, respectively.
Ns= 5403 is the number of far-field samples used on a regular
θ-ϕ-grid over the 4π far-field sphere for the examples of
Section IV.

A. Plane Wave Incidence on Square Plate

As a first validation example, we continue the example of
the ground-plane of Fig. 5 and consider the problem of a plane
wave obliquely incident (θi = 30◦, ϕi = 0◦) on a square
(40λ)2-sized PEC plate, as depicted in Fig. 6a. The scattered
far-field is plotted in Fig. 6b for a ϕ = 180◦-cut and is seen
to coincide with the results of the HO-MoM within the full
dynamic range (50 dB) with an equivalent relative error of
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TABLE I: Total solution time and memory consumption samples from Fig. 7
for ground-planes of various sizes, comparing HO-MLFMM and HO-ADM
on an Intel® Core® i7-9850H CPU @ 2.6GHz with 6 cores. Note that
separating s and T (N = sT ) is only valid for HO-ADM.

Ground-
plane Size

HO-MLFMM HO-ADM

Time Mem. N Iter. Time Mem. s T Iter.

1: (10λ)2 1.5 s 25 MB 3120 11 0.1 s 4.4 MB 40 100 18
2: (80λ)2 118 s 1.4 GB 204,160 17 5.7 s 0.3 GB 40 6400 29
3: (320λ)2 46 m 26 GB 3,274,240 28 98 s 4.9 GB 40 102400 40
4: (620λ)2 - 90 GB 12,300,800 - 6 m 18 GB 40 384400 53

0.01%. In the HO-ADM, the plate is modeled as many (1λ)2-
sized connected elements (see Fig. 6a) and by applying the
DGM with dummy unknowns as described in Section III-B.

In Fig. 7 the total solution time and memory consumption
is plotted, including theoretical asymptotic scaling, comparing
HO-MoM/MLFMM and the HO-ADM for increasingly larger
plates. Note that the wavelength is fixed to 1.0m and the size is
varied. Selected samples (marked with numbers in parenthesis
in Fig. 7) have been tabulated in Table I. Herein it is evident
that HO-ADM is more than an order of magnitude faster than
the HO-MLFMM in terms of total solution time in the whole
span from N =4, 000 to N =15M unknowns. For PEC plates
smaller than (80λ)2 corresponding to N =256, 000 unknowns,
the total solution time of the HO-ADM does not follow the
theoretical asymptotic scaling because it is dominated by
the overhead associated with the special DGM and dummy
unknowns handling.

For a larger (320λ)2 PEC plate, the HO-ADM requires circa
N = 4M unknowns and uses 98 s with 5GB of total memory
consumption whereas MLFMM requires around N = 3.2M
unknowns but uses 46min with a memory consumption of
26GB. For the largest (620λ)2 PEC plate (N ≈ 15M), HO-
ADM uses a total simulation time of around 6min, and a
memory consumption of 18GB, whereas HO-MLFMM would
require 90GB and could not be run on the computer at hand.

B. Phased Patch Antenna Array
As a second example, we consider a 32 × 32-element

dual-frequency right-hand circularly polarized (RHCP) high-
gain antenna array based on the design from [39] with 1024
independent wire excitations, which is illustrated in Fig. 8a
including the employed simulation mesh. The array is meshed
with a total of 122,880 quadrilaterals comprising N ≈ 975,000
unknowns in the HO-MLFMM, whereas N ≈ 1M unknowns
are needed in the HO-ADM due to the DGM and dummy
unknowns as described in Section III-B.

The radiated far-field pattern in Fig. 9a has been computed at
8.4GHz, and the peak directivity for both HO-ADM and HO-
MLFMM is 38.4 dBi (which is close to the reported calculated
directivity of 38.5 dBi [39] considering that not all design
parameters are known). In Fig. 9a both the co- and cross-
polarization patterns are seen to coincide comparing the HO-
ADM with HO-MLFMM, with an equivalent relative error of
0.03% and 0.05% for co-pol and cx-pol, respectively.

Table II shows a comparison of solution time and memory
consumption between the HO-ADM and ESTEAM. For HO-

(a)

(b)

Fig. 8: (a) 32×32-element dual-frequency right-hand circularly polarized all-
metal high-gain antenna array, including employed meshing of the element
cell for the reported results. – White lines indicate edges of the mesh, blue
signify wire-quads, dark gray quads designate the ground-plane and orange
illustrate quads on the radiating elements. (b) Thinned 793-element all-metal
array conforming to a circular rim.

TABLE II: Total solution time and memory consumption for the 32×32 array
in Fig. 8a and the corresponding circular-thinned array in Fig. 8b, comparing
HO-MLFMM and HO-ADM on an Intel® Core® i9-10980XE CPU @
3.0GHz with 18 cores. Results in parentheses are for the thinned array.

Method
Total

Simulation Time
Memory

Consumption
Number of
Iterations

Time per
Iteration

HO-MoM N/A 3540 GB N/A N/A
HO-MLFMM 1 h 2 min

(57 min)
25.1 GB

(22.5 GB)
540

(567)
3.9 s

(3.8 s)
HO-ADM 6 min 18 s

(6 min 18 s)
28.2 GB

(28.2 GB)
481

(506)
0.4 s

(0.38 s)

MLFMM the solution time is around 1 hour with a memory
consumption of only 25.1GB. At the penalty of slightly
increased memory consumption (28.2GB) using the extended
HO-ADM, the solution time can be reduced by a factor of
10 to around 6 min. Both HO-MLFMM and HO-ADM use
around half of the total solution time to setup matrices and
the other half to solve the system, and both use approximately
the same order of iterations. The ten-fold reduction in solution
time for HO-ADM is observed both in terms of setup time and
time per iteration.

Whereas a speed-up by a factor of 30 is possible in the
case of an electrically large PEC plate constructed by simple
flat quads, a speed-up by a factor of only 10 is achievable
for the 32× 32 array. The main reason is the quadratic com-
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Fig. 9: Far-field directivity pattern (ϕ = 0◦-cut) at 8.4GHz comparing the
HO-ADM to the HO-MLFMM for (a) the antenna of Fig. 8a (b) the thinned
array of Fig. 8b. Co-polarization is RHCP whereas the cross-polarization is
LHCP. 3.0dB-beamwidths are marked with dark-gray vertical lines.

putational complexity scaling in s (number of basis functions
per array element), which impacts both the memory O(s2T )
and computational complexity O(s2T log T ) for HO-ADM.
Here it should be noted that the asymptotic total computational
complexity and memory scaling of MLFMM is O(sT log sT ).
For a fixed array element discretization, s can be considered
constant, hence the memory consumption of HO-ADM will
become smaller than that of HO-MLFMM for larger arrays.

While the computational complexity remains the same be-
tween HO-ADM and HO-MLFMM, they differ significantly
in their respective computational complexity constants. The
break-even value of s is strongly problem-dependent; that is,
it varies significantly with the complexity of the individual
elements and how many array elements are considered. From
our investigations, we found that the asymptotic break-even
point, s∞ for T → ∞ (infinite number of array elements) is
on average in the order of 4000 but can vary from 1000 to
10000 and even higher.

C. Circular Rim Patch Antenna Array

The third example takes outset in the same 32×32-element
array but assuming it needs to conform to a circular rim.

To this end, the antenna array needs to be thinned which
is achieved in HO-ADM as described in Section III-A. The
resulting 793-element array is depicted in Fig. 8b, and is
meshed with a total of 92,323 quadrilaterals comprising
N = 755,370 unknowns in the HO-MLFMM, whereas 18,312
(2.4%) additional unknowns are needed in the HO-ADM due
to the DGM and dummy unknowns.

The radiated far-field pattern has been computed at 8.4GHz
and is shown in Fig. 9b with an equivalent relative error
of 0.05% and 0.07% for co-pol and cx-pol, respectively.
As anticipated for a smaller aperture, the peak-directivity is
1.1 dB smaller at 37.3 dB, and the first side-lobe level at
19.9 dB is close to a uniformly excited circular aperture. The
3 dB beamwidth is only 0.2◦ larger for the thinned array
compared to the full 32×32 array.

Solution time and memory consumption in the case of the
circular-thinned antenna array can be found in Table II en-
closed in parentheses. Whereas the HO-MLFMM uses 57min,
the total solution time for the HO-ADM in case of the thinned

array is unaltered at 6min and 18 s. Firstly, this is because
all matrix blocks ak,l need to be computed and stored in
the HO-ADM regardless of the number of thinned elements
in the array. Secondly, for this particular case, the slightly
faster MVP compensates for the additional iterations which are
needed due to the employed preconditioner being less effective
for the circular-thinned array.

V. CONCLUSION

We presented two extensions to the Higher-Order Array
Decomposition Method enabling it to handle thinned and
connected arrays of antennas or scatterers. The Discontinuous
Galerkin Method (DGM) for surface integral equations has
been employed together with appropriately placed dummy
unknowns to retain the FFT-accelerated matrix-vector product
even for connected arrays.

The presented method significantly reduces the solution
time by more than an order of magnitude for both a 32× 32-
element square array and a 793-element circular-thinned array.
This improvement in speed is achieved without approxima-
tions and without significantly increasing memory consump-
tion compared to existing fast methods like the MLFMM.

We note that future work includes an extension to the
presented method enabling the simulation of non-identical
array elements, by exploiting the same technique as described
in Section III-A.
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