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Abstract—The Higher-Order Array Decomposition Method
(HO-ADM) has been extended to regular arrays with dielectric
substrates. To maintain the multi-level block-Toeplitz Method
of Moments (MoM) matrix structure, internal equivalent cur-
rents are introduced, ensuring an FFT-accelerated matrix-vector
product (MVP). Results demonstrate a tenfold reduction in
computation time and lower memory consumption compared to
an existing fast method, specifically for a 400-element array of
PEC cylinders embedded in a dielectric substrate.

I. INTRODUCTION

Modern array antenna designs are evolving towards config-
urations with densely packed elements, leading to electrically
large structures characterized by prominent edge effects and
substantial mutual coupling occurring. In the realm of array
analysis, the use of surface integral equations solved via
the full-wave Method of Moments (MoM) comprehensively
accounts for mutual coupling and edge effects. This is nev-
ertheless at the expense of a computational complexity and
memory consumption which scales as O(N2)−O(N3) and
O(N2), respectively, where N is the number of unknowns.

Several fast full-wave analysis techniques incorporating
error-controllable approximations have been developed, in-
cluding, but not limited to, the Multi-Level Fast Multipole
Method (MLFMM) [1], the Adaptive Integral Method (AIM)
[2], and the pre-corrected fast Fourier transform (pFFT) [3],
which are able to significantly reduce memory consumption
and computational complexity to as low as O(N logN). While
the MLFMM approximates long-range interactions using a
hierarchical multilevel decomposition of the computational
domain, the approximation of the AIM and pFFT methods
lies in projecting basis functions (BFs) onto a regular grid.

Nevertheless, for regular arrays, the Array Decomposition
Method (ADM) [4] offers a computational and memory scal-
ing of O(N logN) and O(N), respectively, without such
approximations. Recently, the boundary integral part of ADM
has been integrated with higher-order (HO) BFs, substantially
reducing the number of unknowns for a specific accuracy
while achieving a tenfold computational speed-up compared
to first-order BFs [5]. The HO-ADM has been extended to
electrically connected arrays [6] and arrays with non-identical
elements [7]. However, thus far the HO-ADM has been unable
to analyze connected array elements of finite thickness, such as
arrays with a dielectric substrate. This paper proposes an ex-
tension to the HO-ADM, enabling it to handle connected array
elements of finite thickness, including those with dielectrics.

Fig. 1. A finite-thickness, electrically connected array structure on which
equivalent electric and magnetic currents are placed on internal walls to make
each array element identical from an electromagnetic perspective.

II. HO-ADM WITH DIELECTRIC SUBSTRATES

The HO-ADM utilizes the multi-level block-Toeplitz (MBT)
structure of the MoM matrix A for regular arrays, to enable
an FFT-accelerated matrix-vector product (MVP). However,
in case of electrically connected array elements of finite
thickness, this MBT structure is lost because elements on the
edge and inside of the array do not possess the same number,
nor placement, of BFs. To overcome this problem, internal
equivalent currents (IECs), together with the Discontinuous
Galerkin Method [8] (DGM), and the Poggio-Miller-Chang-
Harrington-Wu-Tsai (PMCHWT) formulation are employed
to keep the MBT structure of A, which in turn allows for
an FFT-accelerated analysis of connected array elements with
dielectric substrates.

More specifically, for a generic electrically connected array
structure of finite thickness as shown in Fig. 1, equivalent
electric and magnetic currents are added on both sides of the
depicted internal walls. By letting these internal walls radiate
into the background medium, just as the external lateral walls
of the original structure, each element becomes identical from
an electromagnetic perspective and the associated MoM matrix
will again obtain the MBT structure, allowing the HO-ADM
to be applied. Note, that the equivalent currents added on
internal walls should not be part of the simulation, which
would erroneously simulate their radiation into the background
medium. To avoid this, currents on internal walls are excluded
from the simulation by utilizing a constrained Krylov subspace
technique [7] to hide the internal walls from the iterative
solvers perspective. The DGM is used, as described in [6],
to place half roof-top BFs and to ensure current continuity
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Fig. 2. A 20× 20 = 400-element array of PEC cylinders with a diameter
of 0.2λ0 embedded in a 0.15λ0-thick dielectric layer with a permittivity of
εr = 3.0, including dimensions and mesh used for analysis in the HO-ADM.

Fig. 3. Co-pol scattered far-field ϕ = 180◦-cut for an obliquely incident
(θi = 30◦, ϕi = 0◦) y-polarized Gaussian beam feed on the 20×20 = 400-
element array in Fig. 2, comparing the HO-ADM to HO-MLFMM.

over the edges where the individual elements are connected
on the top and bottom surfaces (red lines in Fig. 1). Last
but not least, to keep the MBT MoM matrix structure when
using DGM, auxiliary DGM unknowns need to be placed
on outer array elements on those edges (marked in orange)
which would have been connected if that element had been
completely surrounded by array elements.

III. APPLICATION EXAMPLE

We consider a Gaussian beam illumination of 400 PEC
cylinders with a diameter of 0.2λ0 embedded in a 0.15λ0-
thick dielectric layer with a relative permittivity of εr = 3.0,
as shown in Fig. 2, where λ0 is the free-space wavelength.
The array is illuminated by an obliquely incident y-polarized
Gaussian beam with a field taper of -20 dB at θ = 30◦ from
boresight.

In the HO-ADM, the structure is analyzed as a 20 × 20-
element array of identical elements by using the IEC method
described in Sec. II. The mesh comprises 28,800 quadrilateral
mesh cells, resulting in N=422,400 unknowns. In the HO-
MLFMM, no internal walls are needed, resulting in a total of
22,720 mesh cells corresponding to N=267, 520 unknowns.

Table I shows the total computation time and memory
consumption of HO-ADM and HO-MLFMM. It is seen that
despite that HO-ADM uses nearly 60 % more unknowns, the

TABLE I
COMPARISON OF SOLUTION TIME AND MEMORY CONSUMPTION ON A

LAPTOP (INTEL® CORE® I7-9850H CPU @ 2.6GHz WITH 6 CORES).

Method
Total

Simulation Time
Memory

Consumption
Number of
Iterations

HO-MLFMM 2 h 12 min 7.0 GB 149
HO-ADM 11 min 5.1 GB 361

total computation time for HO-ADM is more than an order of
magnitude faster than HO-MLFMM. The memory consump-
tion of HO-MLFMM is 7.0 GB while HO-ADM uses 5.1 GB.
The lower memory consumption of HO-ADM is mainly due
to the use of a specialized low-memory preconditioner in HO-
ADM which takes into account known redundancies. Note also
that HO-MLFMM is a general solver for arbitrary structures,
whereas HO-ADM is specifically designed for arrays.

Fig. 3 shows the co-polar scattered far-field calculated with
the HO-ADM and the HO-MLFMM for a ϕ=180◦-cut which
shows an equivalent relative error εERE of 0.7% over the entire
region of 360◦. A similar equivalent relative error is observed
in the ϕ=45◦ and ϕ=90◦ planes.

IV. CONCLUSION

We presented an extended Higher-Order Array Decom-
position Method capable of analyzing connected arrays of
finite thickness with dielectric substrates and applied it to a
20 × 20 = 400-element array of PEC cylinders embedded in
a dielectric substrate. The results show more than an order
of magnitude computational speed-up compared to an already
fast HO-MFLMM implementation while maintaining a lower
memory consumption.
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