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Abstract—This paper presents a fast direct solver for the
Combined Field Integral Equation using higher-order discretiza-
tions. By adopting higher-order polynomials with the Method
of Moments, the number of unknowns is significantly reduced.
The fast direct solver leverages the efficiency of the Multi Level
Fast Multipole Method by combining it with randomized linear
algebra to construct low-rank approximations in a H2 format.
The proposed method is fully error controllable and achieves a
setup time with computational complexity of O(N + r3 logN).
Numerical results for the scattering problem of a sphere demon-
strate high accuracy, and the efficiency is demonstrated on the
NASA Almond.

I. INTRODUCTION

SOLVING the Electric Field Integral Equations (EFIE) or
Magnetic Field Integral Equations (MFIE) involves dis-

cretizing surface density currents and solving a large dense
linear system of N unknowns when using the widely employed
Method of Moments (MoM). Selecting an efficient discretiza-
tion is essential for performance. The most popular discretiza-
tion is the RWG [1] first-order basis functions. However, [2]
showed that it is possible to drastically reduce the number of
unknowns N by utilizing higher-order (HO) polynomials to
represent the surface currents and the geometry.

The reduced number of unknowns aids in solving high
frequency problems, however, conventional full-wave solvers
suffer from high complexities, ranging from O(N2) to O(N3).
Therefore, accelerated methods such as the Multi-Level Fast
Multipole Method (MLFMM) [3] have been proposed.

More recently, [4] introduced the algebraic counterpart of
MLFMM, Hierarchical matrices, specifically the H2 format.
The hierarchical matrix format relies on algebraic compression
of matrix blocks of the MoM matrix and opens the possi-
bility of solving scattering problems with fast direct solvers,
completely avoiding iterative solvers. However, computing an
efficient representation of high-frequency integral equations is
still an active research area.

Some approaches use skeletonization to describe the in-
teraction of distant groups, only using a subset of the rows
and columns. These methods are, however, not well suited for
higher-order basis functions, as matrix elements are usually
generated in blocks, resulting in an inefficient compression.
Moreover, error control is generally more difficult for skele-
tonization methods and they often provide worse approxima-
tions for a given rank r than sketching methods [5].

Our work concerns building a fast direct solver using the H2

format and utilizing higher-order basis functions. To achieve

this, we combine randomized linear algebra and MLFMM spe-
cialized for HO basis functions [6]. Hereby we achieve a setup
time with computational complexity of O((r3 +Nr) logN).
In practice, the rank r usually scales proportional to N1/2 for
electrically large quasi-planar geometries [7].

II. THEORY

A H2 matrix is used to efficiently represent the MoM matrix
Z. This matrix format exploits the block low-rank structure
resulting from the singular Helmholtz kernel. To express the
block low-rank structure, a cluster tree is used to recursively
partition the domain of unknowns into clusters of constant
size. A H2 matrix compresses entire block rows and columns,
such that the block between clusters s and t is represented as:

Zst ≃ QsBstV
H
t . (1)

A. Sketching with MLFMM

We compute the orthogonal bases of rows and columns
in (1) by utilizing randomized linear algebra and MLFMM,
which approximates matrix-vector products as

Zv ≃ Znearv +Zfarv, (2)

where Znear is sparse and Zfar can be applied efficiently in
O(N logN) time. The orthonormal row and column bases Q
and V are computed as the range of the sketch:

Y = ZfarΩ, X = ZH
farΨ, (3)

where Ω,Ψ ∈ RN×r and the entries are i.i.d. normal dis-
tributed [8]. Products with Zfar allows for sketching of all
rows/columns simultaneously, and the sketching is repeated
for each level in a bottom-up fashion. Sketching of the entire
matrix requires O(r logN) matrix-vector products in total.

B. Factorizing the matrix

A common strategy for factorizing H2 matrices aims at find-
ing a transformation such that the problem implicitly becomes
a sparse factorization problem [9]. The used factorization
utilizes that all coupling matrices Bst are orthogonal to the
nullspace of the row and column bases Qs,Vt(

Qs Q⊥
s

)H
QsBstV

H
t

(
Vt V ⊥

t

)
=

(
Bst 0
0 0

)
, (4)

thus allowing for efficient elimination of all sparsified indices.
This is then repeated for each group in each level, until we are
left with a small dense matrix which needs to be factorized.



III. NUMERICAL RESULTS

All results presented in this paper are done on a computer
with an Intel Xeon Gold 5218 CPU with 32 cores and 256
GB memory. All test-case geometries have been discretized
by quadrilatterals of side length at most 1.5λ and the highest
order of there basis functions are of 5th order. We set the
desired relative error tolerance of the fast direct solver to 10−3

in all computations.

A. Sphere

As a test case, we consider the scattered field from a sphere
with diameter 20λ illuminated by a plane wave at 6 GHz. The
scattered field is computed by solving the CFIE at an accuracy
of 10−3 and is compared to a Mie series, which is an exact
reference solution. The numerical solution achieves a relative
RMS (RRMS) of 0.3%, and the resulting scattered fields are
shown in Figure 1, where we see that the two solutions are
almost indistinguishable.
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Fig. 1: Comparison of the scattered field on a 20λ sphere
between the numerical solution of the fast direct solver and
the Mie series solution.

B. NASA Almond

We investigate the efficiency of the algorithm by computing
the scattered field of an increasingly larger NASA almond
shown in Figure 2. The object is 0.25 m long and 0.1 m wide,
being illuminated by a plane wave with frequency varying
from 20 to 150 GHz. This leads to systems of equations with
the number of HO unknowns ranging from 10k to 380k. Note
that the discontinuous contributions are not fully accounted for
during filling. However, tests have shown that we can achieve
a RRMS of 0.08% compared to the MoM solution.

The numerical results in Figure 3a show that a scaling
proportional to N3/2 in the computational time is achieved.
This is the best possible scaling that we can expect for
geometry which is mostly locally quasi-planar.

The memory required for factorization storage is shown in
Figure 3b. The memory scales proportionally to N3/2, which
is larger than the expected N logN and is probably due to
the rank of the interactions between the two planar surfaces
of the almond which scales higher than N1/2.

Fig. 2: The NASA almond meshed with HO quadrilaterals.
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Fig. 3: Scaling of the fast direct solver in time and memory
for different electrical sizes of the NASA almond.

IV. CONCLUSION

A fast direct solver for higher-order basis functions has
been implemented. This was achieved by the construction and
factorization of a H2 matrix using randomized linear algebra.
The results demonstrate its efficiency in compressing higher-
order basis functions even for electrically large nontrivial
problems.
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