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Abstract—A full-wave solver for computing monostatic radar
cross sections of electrically large structures is proposed. The
solver is based on method of moments. It uses the multilevel fast
multipole method in combination with higher-order basis func-
tions, a blocked iterative solver, and a compression of the right
hand side matrix, in order to reduce the computational demand.
The accuracy and efficiency of the method are demonstrated on
two benchmark examples.

I. INTRODUCTION

Computing the monostatic Radar Cross Section (RCS) is an
important part of the engineering process in many different ap-
plications. For electrically large structures asymptotic methods
are commonly used [1]. However, in many applications solving
the full-wave problem is required to achieve the desired
accuracy. This is a challenge for electrically large structures
and has until recently been considered too computationally
demanding.

The usage of expensive hardware has been considered in
order to mitigate the high computational demand [2]. Expen-
sive hardware is required when using integral equation based
methods, as for example the Method of Moments (MoM),
since it has the computational complexity O(N3), where
N = O(f2) is the number of unknowns and f is the frequency.

To avoid this use of expensive hardware, one can reduce
the computational complexity of full-wave methods by using
acceleration techniques, such as the Multi-Level Fast Mul-
tipole Method (MLFMM). In combination with higher-order
basis functions, this can significantly reduce the computational
demand [3]. The challenge when using acceleration techniques
for RCS computations is that one needs to rely on an iterative
solver to obtain the solution. However when considering RCS
one needs to solve the system with a different right hand side
for each incident angle. Hence, the solution time scales with
the number of incident angles P . The complexity of solving
the system when using MLFMM is O(PNitN logN), where
Nit is the number of iterations of the iterative solver.

This work builds on the method in [4] and we propose
a numerical method with several measures to reduce the
computational effort. 1) We use higher-order basis functions to
reduce the number of unknowns N for a given accuracy. 2) We
do a compression of the right hand side matrix to reduce the
number of right hand sides P . 3) We use a blocked iterative
solver to reduce the number of iterations per right hand side
Nit. In combination these techniques allow for efficient and
accurate full-wave computation of the RCS for electrically
large structures.

We demonstrate the accuracy of the method by computing
the RCS of a sphere where an analytical solution is known

and demonstrate the efficiency by computing the RCS of the
NASA almond at 100 GHz using standard hardware.

II. NUMERICAL METHOD

Taking into account the polarizations of the incident and
scattered fields, the RCS in a given direction (θu, φu) can be
defined as

σ(θu, φu)ψν = lim
r→∞

4πr2
|ES(θu, φu) · ψ̂|2
|EI(θi, φi) · ν̂|2

. (1)

Here, EI(θi, φi) = E0e
−jk0k̂·r is the incident electric

field due to a plane wave from the direction (θi, φi) with
the plane-wave amplitude E0, propagation vector k̂ =
−(sin θi cosφix̂ + sin θi sinφiŷ + cos θiẑ), and free-space
wavenumber k0. ES(θu, φu) is the scattered far field in
direction (θu, φu). The polarization vectors are chosen as the
spherical unit vectors ψ̂, ν̂ = θ̂, φ̂. For the rest of the paper
we consider the monostatic case (θu, φu) = (θi, φi).

A. Integral Equations and Their Discretization

The full-wave problem can be solved using the integral
equations for time harmonic fields. In particular we consider
a perfectly conducting scatterer S and use the mixed potential
Electrical Field Integral Equations (EFIE). For closed parts of
S we apply the Combined Field Integral Equations (CFIE).

Using a Galerkin approach for the discretization we arrive
at the linear system

Z I = V , (2)

where the impedance matrix Z is N ×N . The solution matrix
I and the right hand side matrix V have size N × P , where
P is the number of incident angles.

We employ higher order basis functions for the discretiza-
tion to reduce the number of unknowns N significantly for
a given accuracy, compared to standard RWG basis functions
[3].

B. Solution Method

To accelerate matrix vector products with the impedance
matrix Z, we use MLFMM. This means that we need to
employ an iterative solver when solving (2).

We use a blocked GMRES as the iterative solver [5]. The
advantage of the blocked version is that the Krylov space is
shared across all right hand sides, which results in a fewer
number of iterations per right hand side.

To reduce the number of right hand sides we apply a
compression to the right hand side matrix

V ≈ C D (3)



TABLE I
RESULTS FOR THE FULL-WAVE RCS COMPUTATION OF THE TWO

CONFIGURATIONS. ρmax THE RADIUS OF THE MINIMUM ENCLOSING
SPHERE, N THE NUMBER OF UNKNOWNS, P THE NUMBER OF RIGHT HAND
SIDES AND PC THE NUMBER OF RIGHT HAND SIDES AFTER COMPRESSION.

Case order ρmax N P Pc time RMS
Sphere 5 3.3λ 4296 84 59 18.6 sec 0.055
Sphere 6 3.3λ 6312 84 59 49.1 sec 0.008
Sphere 7 3.3λ 8712 84 65 2:04 min 0.0009
Almond 6 41.7λ 171921 1080 365 3:06 hrs -

where C has size N×Pc and D has size Pc×P , and Pc < P
is the compressed number of right hand sides. This allows us
to only apply the iterative solver to Pc right hand sides, while
still being able to compute an accurate RCS for all incident
angles.

The final complexity of the method is O(PcNitN logN).

III. NUMERICAL EXAMPLES

All the results in this section are generated on a laptop from
2020, with an i7 12 core 2.7 GHz CPU and 32 GB of memory.

A. Sphere

In this section we consider a sphere of radius 1 m at 1 GHz.
The computed monostatic RCS for different polynomial orders
is shown in Fig. 1. We see that when the polynomial order
is increased the computed RCS converges to the analytical
solution.

As seen from Table I the RCS can be computed efficiently
due to the low number of unknowns, and due to the reduced
number of right hand sides after the compression.
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Fig. 1. Monostatic RCS for the sphere discussed in Section III-A for different
polynomial orders of the basis functions. The dashed line shows the analytical
result. Note the narrow range of the y-axis.

B. Electrically Large NASA Almond

Finally, we consider the classic NASA Almond for the
frequency of 100 GHz, where the electrical size is 41.7λ. For
this electrically large problem we are still able to compute
the monostatic RCS in around 3 hours on a standard laptop,
as seen in Table I. The computed RCS for a φ̂-polarization

incident and scattered field is plotted in Fig. 2 and the mesh
is shown in Fig. 3.
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Fig. 2. Monostatic RCS for the NASA almond discussed in Section III-B, at
100 GHz.

IV. CONCLUSION

A full-wave solver for computing the monostatic RCS of
electrically large structures was proposed. The method com-
bines MLFMM with higher order basis functions, a blocked
iterative solver and compression of right hand sides to reduce
the computational demand. The accuracy and efficiency were
demonstrated on two benchmark problems and more examples
will be given at the presentation.
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Fig. 3. The MoM mesh for the almond discussed in Section III-B. The red
arrow indicates the x-direction, the green the y-direction and the blue the
z-direction.


