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Abstract—An efficient full-wave solver for the computation
of monostatic Radar Cross Section (RCS) for electrically large
structures using the method of moments is developed. This is
accomplished by utilizing higher-order basis functions, to reduce
the number of unknowns, and the multilevel fast multipole
method, to reduce the computational effort and memory foot-
print. These techniques are combined with a compression of the
right hand sides arising from the different incident angles. We
demonstrate that this solver allows for efficient full wave RCS
computations of electrically large structures on a laptop.

Index Terms—RCS, MLFMM, Integral Equations

I. INTRODUCTION

The computation of the monostatic Radar Cross Section
(RCS) is a critical part of many engineering applications.
When considering electrically large structures this has tradi-
tionally been done using asymptotic methods [1], [2]. How-
ever, in many applications computing an accurate RCS will
require solving the problem using a full-wave method. This has
until recently been considered too computationally demanding,
as the number of unknowns in combination with the potentially
large number of incident angles become intractable.

One way to tackle this issue has been by utilizing very
advanced and expensive hardware setups to do full-wave RCS
computations [3], [4]. Such advanced hardware is necessary
when considering full-wave methods based on integral equa-
tions such as the Method of Moments (MoM), since it requires
O(f6) operations.

Acceleration methods, specifically the Multi-Level Fast
Multipole Method (MLFMM), have also been investigated
[5]. MLFMM scales as O(C(f, P )f2 log f) where P is the
number of incident angles considered. Moreover MLFMM
significantly reduces the memory footprint, which removes the
need for very advanced hardware. It is especially effective
when combined with higher-order basis functions that can
reduce the number of unknowns for a specific frequency
[6]. However, even with these improvements, the runtimes
still depends on the number of iterations C(f, P ) required
to solve the linear system that arises with an iterative solver
for all incident angles. The computational effort for iterative
solvers will scale with P , in contrast to direct solvers, where a
factorization can be reused for all Right Hand Sides (RHS). To
tackle this issue [5] utilize interpolation techniques to reduce
the number of RHS of the linear system compared to the
number of incident angles requested by the user. This relies

on using a sampling criterion to determine how many RHS
are required to accurately represent the RCS.

In this paper we will also use higher-order basis functions
and MLFMM. But instead of using interpolation we will
compress the RHS matrix arising from the incident angles
algebraically. This is possible due to the fact that for incident
angles close to one another, the RHS matrix has low numerical
rank. It has the advantage that we can avoid the interpolation
step from [5] and directly compress the matrix arising from
the incident angles provided by the user. Additionally we
demonstrate that this compression can reduce the number of
RHS significantly even compared to the criterion in [5]. This
is of benefit both with regards to the runtime and the memory
footprint of the algorithm.

Combining higher-order basis functions and a blocked it-
erative solver we demonstrate that the proposed method can
efficiently compute the monostatic RCS of complex and elec-
trically large structures without utilizing advanced hardware.

II. MONOSTATIC RADAR CROSS SECTION

In a given direction (θu, φu) the radar cross section
σ(θu, φu) of a structure is generally defined as [7, p. 64]

σ(θu, φu) = lim
r→∞

4πr2
|ES(θu, φu)|2
|EI(θi, φi)|2

. (1)

Here EI(θi, φi) = E0e
−jk0k̂·r is the incident electric field

due to a plane-wave with amplitude E0, propagation vector
k̂ = −(sin θi cosφix̂+ sin θi sinφiŷ + cos θiẑ) and the free-
space wavenumber k0. ES(θu, φu) is the scattered far field in
direction (θu, φu).

Taking into account the polarization of the incident and
scattered fields we define the ψ̂-polarized RCS for a ν̂-
polarized incident field as

σ(θu, φu)ψν = lim
r→∞

4πr2
|ES(θu, φu) · ψ̂|2
|EI
ν̂(θi, φi)|2

. (2)

Here EI
ν̂(θi, φi) is the electric field due to a ν-polarized plane-

wave from the direction (θi, φi). Commonly the polarization
vectors are chosen as the spherical unit vectors such that
ψ̂, ν̂ = θ̂, φ̂.



III. SOLUTION STRATEGY

Our solution strategy consists of several different building
blocks that each contributes to the performance for electrically
large structures. It can be outlined as follows.

We will consider an integral equation formulation, dis-
cretized using the method of moments. This requires solv-
ing a large linear system, which is the bottleneck of the
computational effort. To reduce this bottleneck we use an
acceleration method, the MLFMM, and employ higher-order
basis functions to decrease the number of unknowns. The
potentially large number of RHS still remains a challenge,
which motivates the use of a compression of the RHS. Finally
we utilize a blocked iterative solver to further reduce the
number of matrix-vector products that is required.

A. Integral Equations and Discretization

To solve the full-wave problem we consider integral equa-
tions for time harmonic waves and perfectly electrical con-
ducting scatterer S. The integral equations can be expressed
as a mixed potential Electric Field Integral Equation (EFIE),
however for closed parts of S we employ the Combined
Field Integral Equation (CFIE) to avoid internal resonance.
We note that homogeneous dielectric scatterers can be consid-
ered with the Poggio-Miller-Chang-Harrington-Wu-Tsai (PM-
CHWT) formulation [8]. Using a Galerkin approach to dis-
cretize the equations we arrive at a system of linear equations

Z I = V . (3)

Here Z is called the impedance matrix and is of size N ×N .
The matrix V contains the RHS and is of size N ×P . Finally
I is also of size N × P .

When considering just one polarization, the number of RHS,
P , is equal to the number of incident angles considered in the
monostatic RCS.

The system of equations (3) can either be solved with a
direct solver requiring O(N3 + N2P ) operations or with an
iterative solver requiring O(C(f, P )N2).

B. Multi-Level Fast Multipole Method and Higher-Order Ba-
sis Functions

As using the Method of Moments (MoM) requires O(N2)
operations it becomes intractable for electrically large struc-
tures. To remedy this we will use MLFMM which reduces
the number of required operations to O(C(f, P )N logN).
To further reduce the computational cost we use higher-order
basis functions to reduce the number of unknowns significantly
compared to using the RWG basis functions.

While using MLFMM instead of MoM will certainly reduce
the memory footprint, it is still not clear whether the runtime
will actually be reduced, as this will depend on C(f, P ). Given
the number of RHS P we can estimate C(f, P ) as

C(f, P ) = NitP (4)

where Nit is the number if iterations of an iterative solver to
solve for one right hand side. This shows that the number of

right hand sides are crucially important to the performance of
MLFMM.

C. Compression of Right Hand Sides

In order to improve on the scaling given in (4) we will in
this work apply compression to the RHS, V , in order to reduce
the number of iterations C(f, P ) compared to (4).

The compression relies on the observation that for two
incidence angles close to each other the currents induced
on S are similar. This translates into the fact that the two
corresponding columns of V will be almost linearly dependent.
So as long as we sample close enough we should expect V to
have numerical rank k such that k < P .

This can be exploited by writing V as a matrix product

V ≈ C D, (5)

where C is of size N × k and D is of size k × P . We can
now solve the linear system

Z X = C, (6)

and use D to recover an approximation to I as

I ≈ XD (7)

If k, C and D are chosen appropriately then the approximation
error E = ‖I −XD‖ can be controlled.

As a benchmark for our compression we will consider the
number of right hand sides based on the sampling criterion
from [5], [9]

Psc =
φint

∆φ
=

4fρmaxφint

c0
. (8)

Here c0 is the speed of light and ρmax is the maximum object
radius in the observation plane. We note that Psc is the number
of right-hand sides for each polarization of the incident plane
wave. Psc can be seen as the number of right hand sides we
had to use if we were to use interpolation as in [5] instead of
the compression.

D. Iterative Solver

The most popular solver for MLFMM is GMRES [10]
which is a Krylov solver that, in its basic formulation, treats
each right hand side independently. Hence, in its basic for-
mulation no information from the solution of one right hand
side is reused for the solution of another right hand side,
aside from possibly reusing the last solution as an improved
starting guess. To improve on this we use the Block-GMRES
from [11]. Rather than minimizing the residual r = Z I − V
over the Krylov space {r, Z r, Z

2
r, . . .}, the Block-GMRES

minimizes all P residuals R = Z I − V simultaneously over
the Krylov space {R,Z R,Z

2
R, . . .}. This can reduce the

number of matrix-vector products compared to the estimate
given in (4) [12].



Fig. 1. The MoM mesh for the delivery drone discussed in Section IV-A.
The red arrow indicates the x-direction, the green the y-direction and the blue
the z-direction.
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Fig. 2. Monostatic RCS for the delivery drone discussed in Section IV-A for
a full spherical cut for φ = 0.

IV. RESULTS

In this section we will demonstrate our approach by com-
puting the monostatic RCS for three different applications. As
previously we let P denote the total number of incident angles
given by the user, and we let Pc = k denote the number of
RHS after compression. While the three cases all demonstrates
the method on real world problems, they also illustrate three
different aspects of the performance. In the case IV-A we
show how we are able to compress to a number of right hand
sides lower that the criterion given in (8). In the case IV-B
we show how our approach lets us compute the RCS for a
grid of directions (θi, φi), that leads to a very large number
of incident angles. Finally the last case IV-C illustrates that
the method can be applied to electrical large structures. We
emphasize that all the results are generated on a laptop, with
an i7 2.7 GHz with 12 cores and 32GB of memory.

A. Delivery Drone

As the first example we consider a delivery drone shown
in Figure 1. The data and results are shown in Table I. The
RCS for P = 720 number of incident angles is plotted in
Figure 2. As seen in Table I the number of right hand sides is
compressed to Pc = 52 which is significantly lower than the
estimated number of right hand sides by the criterion in (8).

The Monostatic RCS is plotted in Figure 2.

Fig. 3. The MoM mesh for the corner reflector discussed in Section IV-B.
The red arrow indicates the x-direction, the green the y-direction and the blue
the z-direction.

Fig. 4. The RCS grid for the corner reflector discussed in Section IV-B.

B. Corner Reflector

For the second case we consider the triangular corner
reflector shown in Figure 3. For this case we compute the
RCS for a grid of incident directions, to demonstrate that
the compression is effective for large problems. We consider
91×91 = 8281 grid points. As seen from the results in Table I
the number of right hand sides after the compression is only
Pc = 180, which amounts to a compression to less than 2.5%
of the initial number of right hand sides.

The RCS grid is shown in Figure 4.

C. Helicopter

The final case we consider is an electrically large helicopter
of size shown in Figure 5. We consider a frequency of 8 GHz
and the helicopter has a radius of ρmax = 93.4λ, so this is
an electrically large problem. The computed RCS is shown in
Figure 6. Even with the highly varying RCS we were still able
to compress the right hand sides to around 1

3 of the number
of right hand sides necessary according to the criterion (8).



TABLE I
RESULTS FOR THE FULL-WAVE RCS COMPUTATION OF THE THREE CASES. THEY WERE ALL RUNNED ON A LAPTOP, WITH AN I7 2.7 GHZ WITH 12 CORES

AND 32GB OF MEMORY. f DENOTES THE FREQUENCY, ρmax THE RADIUS OF THE MINIMUM ENCLOSING SPHERE, N THE NUMBER OF UNKNOWNS, P
THE NUMBER OF RHS, PSC THE REQUIRED NUMBER OF RHS ACCORDING TO THE CRITERION (4) AND PC THE NUMBER OF RHS AFTER COMPRESSION.

Case f ρmax N P Psc Pc Run time
Delivery Drone 10 GHz 0.16 m 10325 720 135 52 3 min
Corner Reflector 8 GHz 0.21 m 14452 8281 - 180 9:44 min
Helicopter 8 GHz 3.5m 333479 1173 1173 392 8:44 hours

Fig. 5. Mesh of helicopter at discussed in Section IV-C. The red arrow
indicates the x-direction, the green the y-direction and the blue the z-direction.
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Fig. 6. Monostatic RCS for the helicopter discussed in Section IV-C for a
full spherical cut for φ = 0.

V. CONCLUSION

It was demonstrated that MLFMM with higher-order basis
functions in combination with a compression of the right hand
side matrix allows for efficiently computing the monostatic
RCS of electrically large structures, without requiring ad-
vanced hardware. The implementation of this approach was
shown to provide a strong performance for a number of
different cases.
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