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Abstract—The performance of the Array Decomposition
Method for finite regular antenna arrays with arbitrary identical
elements using higher-order basis functions is investigated. We
demonstrate how using higher-order basis functions results in
significantly reduced simulation time for a 10 x 10 (22X x 22))
circular horn array, without the need for approximations.

I. INTRODUCTION

RADITIONALLY, antenna arrays have been employed in
Tradar applications, radio astronomy and as feeds for re-
flector based systems. For such applications, traditional design
approaches based on embedded element patterns and array
factors or variants thereof have sufficed. With the on-going
move from large spacecrafts in the geostationary orbit (GEO)
to smaller spacecrafts in low earth orbits (LEO), as well
as an increasing demand for flexible in-orbit configurations,
direct radiating arrays (DRA) are employed more frequently
for space missions. DRA commonly comprise densely packed
elements which in turn demands more accurate modelling
of edge and mutual coupling effects. In addition, stringent
performance requirements in space substantiates the necessity
of rigorous full-wave numerical methods.

Conventional full-wave methods, e.g. the Method of Mo-
ments (MoM), suffer from excessive memory requirement
and computational complexity, O(N?) and O(N?) — O(N?3)
respectively, where IV is the number of unknowns.

Several iterative methods have been proposed for the so-
lution of electrically large arrays, in which the memory and
computational requirement is O(N log N). Examples include
the Multi-Level Fast Multipole Method (MLFMM) [1], the
Adaptive Integral Method (AIM) [2], and the pre-corrected fast
Fourier transform (pFFT) [3]. While these methods accelerate
the analysis of general arrays, it has been shown that exploiting
the geometry of regular antenna arrays significantly reduce
both memory requirement and computation time [4].

The present work concerns the MoM solution of electrically
large antennas arrays with arbitrarily shaped, regularly spaced,
identical and perfectly electrically conducting identically ori-
ented elements, a common configuration for modern antenna
arrays. The translational invariance of associated Green’s
function, together with the regular geometrical structure of
the array, result in a block-Toeplitz matrix [5] which allows
for a Fast Fourier Transform (FFT)-accelerated matrix-vector
product (MVP) [4], [6] in the iterative solution, using the
Array Decomposition Method (ADM).

ADM scales as the square of the number of basis functions
per array element [6]. It is therefore paramount to keep the
number of basis functions as low as possible for a fixed
solution accuracy. Several approaches to reduce the sensitivity
of ADM to increasing number of basis functions have been
proposed [4], [7]; however, they are based on approximations,
which may impact solution accuracy.

We demonstrate how the number of basis functions per
array element can be reduced using higher-order (HO) ba-
sis functions [8]. Consequently, used in combination with
ADM, a significant reduction in computation time can be
achieved. To demonstrate this, the HO-ADM is applied to
a 10 x 10 (22X x 22)) circular horn array, resulting in much
lower computation times compared to the ADM using first-
order basis functions, without the need for approximations.

II. THE ARRAY DECOMPOSITION METHOD

This section is a distilled version of ADM [4], for the
purpose of understanding ADM’s quadratic scaling in number
of basis functions per array element. We take outset in an
arbitrary p X g element planar array, and write the total number
of unknowns as N = ST, where S is the total number of
unknowns per array element, and 7" = p X q is the total number
of array elements.

Since the MVP with a (circulantly extended) block-Toeplitz
matrix is equivalent to a convolution operation on the blocks,
the MVP can be accelerated by the FFT. However, the indi-
vidual matrix blocks of size S x S do not, in general, possess
any special symmetry, and can therefore not be accelerated by
the FFT. Thus, the computational complexity of ADM scale
as O(S%T log(T)) rather than O(N log N).

Moreover, in order to perform the MVP, ADM needs to
store (2p — 1) x (2¢g — 1) blocks of size S x S, resulting
in an asymptotic memory scaling of O(S2T). With this
asymptotic scaling, it is critical to keep S as low as possible
without impacting solution accuracy. This can be achieved
using higher-order basis functions. In this work, an ADM
implementation using the higher-order hierarchical Legendre
basis functions from [8] is used.

III. RESULTS

We consider a 22\ x 22\ direct radiating array (Fig. 1)
which consists of 10 x 10 circular horn antennas fed by circular
waveguides excited with the fundamental TE;; mode. The ra-
diated far-field pattern has been calculated using HO-ADM on



Fig. 1: 10x10 element circular horn array. 2.1\ aperture
diameter. 5.6\ horn height. 2.2 inter-element distance.

a computational machine with an Intel®Xeon®5218 CPU
@ 2.3GHz with 16 cores. A reference solution has been
generated using the smallest mesh length possible on the
available system. For fixed basis function order p, the maximal
admissible mesh length has been varied between 0.15\ and
1.5\ to ensure an RMS error in the radiated far-field forward
hemisphere that is less than 1 % (far-field requirement).

Fig. 2 (a) shows the total computation time (including
initialization and iterative solution) and memory usage (b),
for different fixed basis function orders p. For each order p,
the maximal admissible mesh length has been decreased until
reaching the far-field requirement (or lower). For p = 1, a total
of 288,400 mesh cells (= 0.15)) are needed to satisfy the far-
field requirement, which is considerably more than the 54,000
mesh cells (= 0.3)\) needed for p = 2. The high number of
mesh cells for p = 1 results in high ADM initialization time,
primarily due to the increased number of integrals to compute.

The significant difference in computation time from
220 min. (p = 1) to 25 min. (p = 2) can be explained
primarily by the decrease in the number of mesh cells. Notably,
due to meshing constraints, the mesh is more refined for p = 2
and p = 3, resulting in a two and four times lower RMS error,
respectively, than the solution for p = 1 and p = 4. The
increased accuracy is the primary reason for the relatively
small decrease in total number of unknowns, memory and
computation time from p =2 to p = 3.

Overall, the results clearly demonstrate superior perfor-
mance when increasing the basis function order. This is most
clearly seen in the transition from p = 1 and p = 2, where the
total computation time decreases by a factor of 9, the memory
decreases by a factor of two, even while the RMS error is
halved.

IV. CONCLUSION

A reduction in required memory and computation time
for simulation of regular arrays has been demonstrated. This
is achieved by means of the Array Decomposition Method
used in conjunction with higher-order basis functions. It is,
to the best of the authors’ knowledge, the first time such
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Fig. 2: Total computation time (a) and memory usage (b) for
HO-ADM required to reach < 1% far-field RMS error.

a combination has been implemented. The results show that
using this approach, the memory and computation time savings
in the order of 9 and 44 times, respectively, can be achieved
compared to traditional first-order basis function implementa-
tions.
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