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Abstract—We present a fast source reconstruction method
suitable for antenna diagnostic applications of radiating struc-
tures on electrically large platforms. The method is based on a
novel implementation of a recent reformulation of the inverse
electromagnetic scattering problem, and is solved using a Higher
Order Method of Moments (MoM) discretization. The novel
implementation achieves asymptotically better scaling than previ-
ously possible, and in particular the memory use is substantially
lower than was previously possible. Results from two example
cases are presented where the new method is compared to the
current commercial state-of-the-art solver in DIATOOL 1.1, and
significant improvements are observed in terms of computation
times and memory requirements.

I. INTRODUCTION

Source reconstruction is a highly relevant topic that has
attracted much attention throughout the past decades in appli-
cations such as antenna diagnostics [1]–[3], near-field to far-
field transformation and filtering [4], [5], antenna placement
investigations [6] and performance analyses of 5G devices [7].
While the applications vary, the fundamental challenge is to
find the currents that radiate a specific electromagnetic field.

The electromagnetic source reconstruction problem is a
linear inverse problem based on finding currents with known
location that radiate a given complex vector field [8]. The
problem is naturally formulated in terms of integral equations
based directly on Maxwell’s equations. For applications with
diagnostics purposes, the equations should be augmented with
Love’s condition of zero fields inside a surface enclosing the
sources, such that the sought currents provide a unique solution
[9] that represents the actual physical currents on the structure.

Inverse equivalent surface current solvers is the tool that
is used to process near-field or far-field measurement data in
order to reconstruct the fields or currents in the extreme near-
field region of the radiating structure. A common limitation
with most inverse equivalent surface current solvers to date
is that their computational requirements have less desirable
scaling properties in comparison to their forward-solver (radi-
ation problem) counter-parts in terms of frequency, electrical
size of the scatterer and the amount of input data required to
solve the problem. Much work have been presented to date
that attempts to mitigate these limitations [10]–[12], but for
diagnostics purposes, the fundamental challenges regarding the
required memory and computation time have remained.

In this work, we present the results of a current collaboration
between TICRA and the European Space Agency (ESA) in
the activity “Fast Diagnostic Methods for Large-Scale Full-
Satellite Antenna Measurements”, No. AO/1-9352/18/NL/AF.
The heritage of TICRA in terms of a state-of-the-art method of
moments (MoM) solver, based on higher-order basis functions
and higher-order mesh elements [13], together with innovative
regularization techniques [14], have been used as a stepping
stone to accelerate the development of new improved source
reconstruction methods.

The main driver for the improved results in this paper,
however, is that of a projection operator based on Calderón
operators as first presented in [15]. It has been shown that by
using a Calderón projection it is assessed that the achieved
solution yields the correct currents from a physical point of
view. However, the numerical implementation described in
[15] can be improved substantially upon, in particular in terms
of the projection operation itself.

In order to achieve acceptable performance when recon-
structing currents on electrically large structures, matrix-free
representations of the relevant operators are necessary. Using
matrix-free operators lead to a number of challenges, in partic-
ular regarding the memory/computational time trade-off. The
specific implementation shown in this paper achieves drastic
improvements, around two orders of magnitude, in terms
of memory requirements and computational time, without
sacrificing solution accuracy compared to previously presented
inverse source reconstruction methods.

The paper is organised as follows, in Section II the theory
of the proposed method is presented and in Section III an
overview is given of the numerical implementation of the
source reconstruction solver. After that, the results from two
source reconstruction application cases are presented in Sec-
tion IV, followed by some concluding remarks in Section V.

II. THEORY

The basic electromagnetic concept involved in reconstruct-
ing currents is the equivalence principle, which states that the
sources and scatterers enclosed inside a reconstruction surface
(RS) S, here labelled M int, J int, can be replaced by an
equivalent set of surface current densities MS ,JS on S, such
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Fig. 1: The equivalence principle for an imaginary closed
surface S: original problem (a) and equivalent problem (b).
Introducing surface current densities on S, JS and MS , which
radiate the fields Eext and Hext outside S such that the sources
inside S can be removed.

that these currents radiate the same fields Eext,Hext outside
the surface. This concept is illustrated in Fig. 1.

Consequently, Eext,Hext and the currents on the surface are
related by the outward unit normal vector n̂ [16]

JS = n̂× (Hext −H int), (1)

MS = −n̂× (Eext −Eint). (2)

Based on these surface current densities, a data equation can
be set up, linking measurements and the equivalent currents
[3]

Emeas(R) = −jωµoLJS +KMS , (3)

where R indicates the observation point, and the integral
operators L and K are defined in [3, Eq. (3)] as

LJS =

∫
S

JS(R
′)G(R,R′)dS′

+
1

k20

∫
S

∇′
S · JS(R

′)∇G(R,R′)dS′ (4)

KMS =

∫
S

MS(R
′)×∇G(R,R′)dS′, (5)

where e−jωt time dependence is assumed and suppressed. In
(4), R′ denotes the integration point, k0 = 2π/λ0 is the
free-space wavenumber, λ0 is the free-space wavelength and
G(R,R′) = exp (−jk0∥R−R′∥2) / (4π∥R−R′∥2) is the
scalar Green’s function.

The key challenge is that the currents determined by a
solution to (3) are non-unique due to the presence of the
−H int and −Eint terms in (1). To overcome this problem
Love’s equivalent current condition [9] of zero fields inside
of S (H int = Eint = 0) is considered

−
(
n̂×K + 1

2

)
JS − jωϵon̂× LMS = 0

−jωµon̂× LJS +
(
n̂×K + 1

2

)
MS = 0

 for
R → S−.

(6)
This relation enforces the zero-field condition when moving
the observation point onto S from the inside. Most previous

works are based on solving the coupled system of equations
in (3) and (6). However, this approach is computationally
expensive to solve in general, and since regularization is
needed to balance the two conditions, a matrix-free approach
is inefficient.

An alternative approach was suggested recently in [15],
where a Calderón projection is used to restrict the solution
space to the space spanned by the Love currents. More
specifically, a Calderón pre-conditioner was formulated for the
iterative solution of the inverse problem. This approach implies
that we can find the unique Love currents by starting with any
set of the non-unique currents (1), and then simply compute
and subtract the contribution from the unwanted interior fields.

JLove
S =

(
n̂×K − 1

2

)
JS + jωϵon̂× LMS

MLove
S = jωµon̂× LJS −

(
n̂×K − 1

2

)
MS

 for
R → S−.

(7)
The right-hand-side of (7) differ from (6) only through the
signs of the various terms. This reflects that the task involves
the computation of the interior fields, which may then be
forced to zero as in (6) or be used to subtract the unwanted
contribution and obtain the Love’s currents as in (7). Although
the non-uniqueness is solved either by enforcing (6) or by
applying the mapping (7), the problem is still ill-posed. A
regularization scheme is therefore needed to obtained a stable
solution.

III. IMPLEMENTATION

In order to solve the inverse problem numerically, using
a simulated or measured field in amplitude and phase as
input, the reconstruction surface and the unknown currents
are discretized. This implies that the data equation (3) is
discretized to a linear system of equations

Ax = b, (8)

where A is a matrix representing the radiation from the
unknown currents x on S that generate the measured fields
in b. The boundary condition equation (6) is discretized to

Lx = 0, (9)

here L is the matrix representation of Love’s condition.
Similarly, the Calderón projection in (7) is discretized to

PxLove = Cx, (10)

where P is a sparse projection operator, x are the initial
reconstructed currents, xLove are the sought after currents that
fulfil Love’s condition, and C is similar to L except for the
signs. The discrete form of the Calderón mapping in (10) can
be restated as

xLove = P−1Cx = Tx (11)

implying that T can be seen as a projection operator from the
general space of all currents on the RS to the space of currents
that fulfil Love’s condition.



The mathematical problem to solve can be formulated as

min
x

∥Ax− b∥2, (12)

s.t. Lx = 0, (13)

and with the assumption that LTx = 0, i.e. the range of
T coincides with the null-space of L, the Calderón mapping
allows us to restate this problem simply as a preconditioned
Least Squares problem

min
z

∥ATz − b∥2, (14)

yielding the solution x = Tz. The problem (14) can be
solved in a number of ways, and in this work a novel solution
procedure is proposed.

The solution procedure consists of using the Conjugate Gra-
dient Least Squares (CGLS) method as an iterative procedure
to solve the system ∥Ax − b∥2, and then applying T to that
solution to make sure the solution fulfils Love’s condition.
After the T projection, a few additional CGLS iterations are
taken to slightly reduce the residual of the system. Specifically,
the procedure has three steps:

1) Solve y = argminx ∥Ax− b∥2 using CGLS.

2) Compute z = Ty.

3) Take a few iterations of CGLS applied to the problem
y = argminx ∥Ax− b∥2, with starting guess x0 = z.

This procedure has several advantages. First and foremost,
only one matrix-vector product with T is necessary which
means that T does not need to be stored. Second, the only
matrix needed to be inverted is P . This matrix is extremely
well conditioned, and since it is only needed once during
the application of T , the action of inverse can be computed
using an iterative solver. Finally, the only matrix to be applied
multiple times is A, and many efficient algorithms exist
for computing the action of this matrix and its hermitian.
Crucially, all matrix multiplications with A, AH and C are
done using so-called fast methods, i.e. methods that scale
at most as O(a log b) where a = b = max{M,N}, and
M/2 is the number of measurement data points and N is the
number of unknowns. Since P is generated on-the-fly and is
sparse with O(N) elements, this means that both memory and
computational time scales as O(N logN) or O(M logM),
which is asymptotically better than all previously published
methods.

IV. RESULTS

Two application cases are presented where the proposed
source reconstruction solver is put to the test. The first case
consists of simulated data of a 10 GHz reflector antenna on a
satellite platform. There are a number of advantages associated
with using simulated data as input to the source reconstruction
software. For example, noise can easily be added manually to
the data to synthesise any level of measurement noise, and the
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Fig. 2: Application case 1, OHB SmallGeo satellite platform
with three reflector antennas illuminated by corrugated feed
horns, seen from two different perspectives.

errors in the reconstructed fields and currents can be computed
from comparison with known near-field data. This case will
test if the presented method can handle source reconstruction
of extremely large problems. The second case consists of
measured data of a 664 GHz feed horn from the meteorological
operational satellite second generation (MetOp-SG) ice cloud
imager in [17]. This case will test how well suited the
presented method is for high frequency source reconstruction
applications.

A. Reflector antenna on satellite platform

A simplified model of the OHB SmallGeo satellite platform
with three reflector antennas was implemented in TICRA
Tools. The platform has the outer dimensions 2.6 m x 1.6 m
x 3.1 m and is presented in Fig. 2. The reflectors, which
are labelled 1, 2 and 3 in Fig. 2, are each illuminated by
a corrugated horn antenna, located at the reflector focal point,
operating at 10 GHz with an illumination tapering of -12 dB
at the edge of the reflector. The feed antennas can easily be
scaled in frequency and operate in either linear polarisation
(LP) or circular polarisation (CP).

In this work, only the horn illuminating reflector 2 is active
and radiates in LP in the offset direction. The illuminated
reflector has a diameter and focal length of 0.7 m and an
offset of 0.49 m. The far-field of the complete geometry was
computed in TICRA Tools using the MoM/MLFMM solver in
ESTEAM and exported as a full sphere cut with a sampling
spacing of 0.1◦ in θ and in ϕ, resulting in 6 481 800 sampling
points in total. A normal distributed random noise level
corresponding to a signal-to-noise ratio (SNR) of 60 dB was
added to the data so synthesise a real measurement scenario.

A box enclosing the platform and the reflectors with the
measures 4.1 m x 1.8 m x 3.6 m was used as RS. The re-



Fig. 3: Application case 1 with a box RS (left) and the
magnitude of the reconstructed electric current density (right).

constructed currents on the RS were computed based on the
total field from the feed and the platform with reflectors.
The computational details of the reflector on platform source
reconstruction case are presented in Table I. In summary, the
problem consists of 3 229 688 higher order (HO) unknowns
(equivalent to about 13 million Rao-Wilton-Glisson (RWG)
unknowns), requires 60.2 GB random access memory (RAM)
and finishes in a little over 4 h when analysed on a workstation
computer with a Cascade Lake CPU with 32 physical cores.
We stress that this is substantially lower than previously
reported results in the literature, and in particular the RAM use
is actually comparable to the RAM required for the forward
problem, a remarkable conclusion.

The antenna geometry enclosed by the RS and the mag-
nitude of the reconstructed equivalent electric current density
are presented in Fig. 3. The centre feed horn is not enclosed
by the RS since the scattering effect from this object on
the radiated far-field was negligible. The reflector radiation
is clearly visible and looks as expected in the reconstructed
currents. A more detailed representation of the reconstructed
currents is presented in Fig. 4, where the co-polarisation and
cross-polarisation of the electric current density are viewed
from the main beam direction of the reflector far-field.

To validate that the reconstructed currents are in fact the
sought after unique physical currents, the scattered field from
the platform and the reflectors was used as input for source
reconstruction on the same RS that what was used for the
total field. From this second set of reconstructed currents the
root-mean-square error (RMSE) was computed in relation to
the corresponding forward MoM currents computed in TICRA
Tools ESTEAM. The RMSE of the electric current density is
defined as

RMSEJ =

√√√√∑NRMS

i=1

∣∣J rec
S (xi, yi, zi)− J ref

S (xi, yi, zi)
∣∣2∑NRMS

i=1

∣∣J ref
S (xi, yi, zi)

∣∣2 ,

(15)
where J rec

S (xi, yi, zi) and J ref
S (xi, yi, zi) are the the recon-

structed and reference MoM current densities evaluated at the
points in space (xi, yi, zi), and NRMS is the number of equally
spaced evaluation points on the RS. The definition in (15)
was also used to evaluate the corresponding RMSE of the
reconstructed magnetic current density. A worst-case RMSE

Fig. 4: Application case 1 reconstructed electric current den-
sity. The co-polarisation currents are presented at the top and
the cross-polarisation currents at the bottom.

of 6.6 % was computed, which is acceptable in relation to the
requirements specified in the activity of RMSE < 10 %.

From the reconstructed currents the electric and magnetic
fields can be computed anywhere in space outside of the
RS. As an additional validation test, the reconstructed far-
fields were computed and compared to the input far-field data
provided to the algorithm. The far-field was computed with the
sampling θ = [0, 180]◦, Nθ = 1001, ϕ = [0, 315]◦, Nϕ = 8.
The resulting far-field RMSE was < 0.5% which indicates
that the input far-field was successfully reconstructed.

The synthetic measurement model in TICRA Tools enables
the possibility to introduce different types of antenna defects to
be detected. The feed and reflector of antenna 2 were translated
50 mm in the −x-direction, towards the platform, to achieve a
reflector illumination blockage error, as is illustrated in Fig. 5.
The enclosing box RS in Fig. 3 was re-used for the antenna
defect source reconstruction problem, resulting in the same
number of input data points and unknowns as in the nominal
case. The reconstructed equivalent electric current density
components computed from the total far-field of the defect
antenna scenario are presented in Fig. 6. When comparing
the reconstructed currents in Fig. 4 and in Fig. 6 it is seen
that the blockage of the reflector illumination has an effect on
the reconstructed currents, especially in the co-polar scattering
from the rightmost side of the platform in Fig. 6.

B. Ice cloud imager 664 GHz feed horn

Next, the method was evaluated for source reconstruction
of high frequency applications, where measurement data of
a 664 GHz feed horn was used as input. The antenna had
been measured by ESA at the European space research and
technology centre (ESTEC) sub-mm wave scanner in support
to the ice cloud imager instrument of the MetOp-SG program
[17]. During the experimental characterisation of the antenna
under test (AUT) an WR1.5 open ended waveguide (OEW)
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Fig. 5: Nominal antenna setup (a) and a platform blockage
error introduced to the radiating antenna (b).

Fig. 6: Reconstructed electric current density where a reflector
illumination blockage defect has been introduced. The co-
polarisation currents are presented at the top and the cross-
polarisation currents at the bottom.

with a conical shape for backscatter reduction was used as
a probe. The co-polarisation and cross-polarisation near-fields
were sampled over a planar scan surface of 20 mm x 20 mm
located 2 mm in front of the AUT. Further details of the
measurement campaign are presented in [17]. From the mea-
sured near-field data the far-field of the AUT was computed
and provided to TICRA. Far-field data was only available
in a truncated angular range in the forward hemisphere at
the angles θ = [−75◦, 75◦]. The sampling density of the
provided far-field is 0.1◦ in θ and 22.5◦ in ϕ. Ideally, the data
should have been sampled more densely in the ϕ-direction in
order to fulfil the recommended sampling criterion for source
reconstruction. To this end, a spherical wave expansion of the
measured data was carried out as a preconditioning step to
interpolate the measured data.

In order to carry out source reconstruction of the AUT
knowledge of the physical envelope of the antenna is required.
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Fig. 7: Application case 2 envelope enclosing the AUT.

Fig. 8: Application case 2 AUT mock-up with the RS used in
the source reconstruction analysis.

A sketch of the envelope of the AUT is presented in Fig. 7.
A 15 mm x 15 mm x 22 mm box reconstruction surface was
applied that encloses the AUT envelope, and provides some
margin for AUT misalignments in the measurements, as is
illustrated in Fig. 8. The computational details of the 664 GHz
horn source reconstruction case are presented in Table I. The
problem consists of 574 464 HO unknowns, it requires 6.0 GB
of RAM and was computed in 44 minutes on the same 32
core computation machine as was used in Section IV-A. A
much smaller computer could of course have been used in
the analysis of the problem, with the main difference that the
computation time would have been longer.

The two polarisation components of the reconstructed elec-
tric current density at the RS as seen from the AUT main beam
direction are presented in Fig. 9. Since no prior information
had been provided of the AUT radiation except for the far-field
it was difficult to access the antenna performance solemnly
based on the reconstructed currents. Nevertheless, the results
indicate that the antenna performs as expected both in terms
of the co-polarisation beam shape and the cross-polarisation
levels and symmetry. In the same manner as for case 1,
the reconstructed far-field was computed with the sampling
θ = [0, 75]◦, Nθ = 1001, ϕ = [0, 315]◦, Nϕ = 8. The resulting
far-field RMSE was < 0.3% which shows that the input
far-field had been successfully reconstructed by the source
reconstruction solver.
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Fig. 9: Application case 2 reconstructed electric current den-
sity. The co-polarisation currents are presented to the left and
the cross-polarisation currents to the right.

TABLE I: Analysis requirements of application cases 1 and 2,
where the Calderón inverse 3D MoM method is compared to
the previous state-of-the-art SCGLS inverse 3D MoM method.

Case Solver RS
Nbr. of Memory Comp. time

unknowns req. (GB) (hh:mm)

1 Calderón box 3 229 688 60 04:05
1 SCGLS box 3 229 688 223 000 –:–

2 Calderón box 574 464 6 00:44
2 SCGLS box 574 464 6 660 –:–

C. Computational requirements

As a final step, source reconstruction of example case 1
in Section IV-A and example case 2 in Section IV-B were at-
tempted using the 3D reconstruction method in DIATOOL 1.1,
the most recent commercially available version of the software.
The 3D reconstruction method in this software consists of a 3D
MoM standard-form conjugate gradient least squares (SCGLS)
solver, which represent the current state-of-the-art in terms
of commercially available source reconstruction software. The
main limitations of the SCGLS reconstruction method is the
scaling of the memory requirements and simulation time in
relation to the number of unknowns and the frequency of the
AUT. For example, the simulation times scale with frequency
as O(f6). The values in Table I show that the high frequency
horn example would require 6.66 TB of RAM to solve using
SCGLS, and the reflector on platform example would require
223 TB of RAM. This comparison clearly displays the extreme
acceleration that has been achieved in the new Calderón source
reconstruction solver presented.

V. CONCLUSIONS

An extremely efficient implementation of a fast source
reconstruction method for radiating structures on electrically
large platforms has been presented for the first time. The
implementation demonstrates drastic reductions in memory
requirement and computation time in relation to current state-
of-the-art source reconstruction solvers. In particular, the im-
plementation is to the authors’ knowledge the first published
matrix-free source reconstruction method with O(N logN)
complexity. The effect of this complexity reduction in practice

is so substantial that the memory requirements are comparable
to that of solving the forward radiation problem, a substantial
feat in any inverse solver implementation. Crucially, as we
have demonstrated, these computational improvements come
with no significant loss of accuracy.
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