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Introduction Content

Surfaces with random distortions are encountered in many 
practical antenna problems, e.g., when a reflector antenna is 
manufactured to a specific surface tolerance or it is subjected 
to wear and tear during its lifetime. As increasingly higher 
frequencies are used in reflector systems, it becomes more 
and more important for the antenna engineer to be able to 
accurately estimate the effects of surface distortions.

In this white paper, we describe how the scattered field from 
a surface with random distortions can be calculated by 
GRASP and how these results, as shown in more detail in [1], 
correspond to the widely used Ruze equations [2]. 
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Random surface errors in GRASP are defined by the 

two values ns and εp. The random surface is generated 

by covering the reflector by a regular grid with a node 

spacing ns along both axes of the grid. The surface 

offset at the nodes of the grid is selected as random 

numbers uniformly distributed in an interval with the 

peak-to-peak value 2εp and a mean value of zero. A 

cubic interpolation function connects the grid points 

and yields a continuous surface between the random 

values at the nodes. This means that within a square 

with side lengths 2ns the surface distortions are 

correlated, whereas they are nearly uncorrelated for 

larger distances.

It can be shown that the cubic interpolation used in the 

GRASP random surface leads to an rms value, εrms, equal 

to the selected peak value, εp, times a correction value 

stemming from the cubic interpolation of 0.47, i.e., 

εrms = 0.47 · εp (1)

Figure 1  – The surface shape for different smoothness. 

The distance between the black lines on the surface is 

0.06 mm. Only a corner of the plate is shown

Random surface error model
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The spacing between the nodes, ns, determines the 

smoothness of the surface. A larger value of ns results 

in a slower variation across the surface, and thus a 

smoother surface. On the other hand, smaller values  

of ns provide a more rapidly varying surface. 

Five cases of surface smoothness corresponding to 

ns = 1.2, 0.6, 0.24, 0.12, and 0.06 mm for the same 

value of εrms are illustrated in Figure 1.

Correlation length

A common source of confusion when dealing with 

rough surfaces is the different definitions of correlation 

length used in different professions. In his examinations 

of reflector antennas, Ruze [2] based his equations on 

a concept of a correlation region with diameter “2c” 

outside of which the correlation is zero. Another more 

general definition of the correlation length Lc, which is 

widely used in optics, is the distance from the peak of 

the autocorrelation function, ACF, at which the ACF has 

dropped to a value e -1 below the peak [3].

No distortion

ns = 1.2 mm

ns = 0.3 mm

ns = 0.24 mm

ns = 0.12 mm

ns = 0.06 mm



To illustrate the two different definitions and how they 

relate to the node spacing ns used in GRASP, a rough 

surface with a grid spacing of ns = 5 mm and εp = 0.5 

mm is shown in Figure 2. The autocorrelation function, 

ACF, of this rough surface is shown in Figure 3.

The autocorrelation function in the cuts through the 

peak along x and y are shown in Figure 4 and Figure 5, 

respectively.

The peak value of the autocorrelation function,  

ACF(0) = 0.0544519, corresponds to an rms surface 

error, εrms = √ ACF (0) = 0.2333494mm ≈ 0.47εp, which 

is in good agreement with the expression in (1).

The correlation length Lc , defined as the distance at 

which the value of the autocorrelation function is e -1 

of the peak value, is Lc = 3.86 mm ≈ 0.77 ns. 

It is seen that the distance between the first two 

minima of the autocorrelation function is approximately 

10 mm, or 2c, thus corresponding well to Ruze’s 

definition of correlation distance.  In other words, it is 

sensible to compare the results of Ruze for a correlation 

region of 2c to those of GRASP with a node spacing of ns.
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Figure 2  – The surface shape for 5 mm grid. Unit in mm Figure 3  – Autocorrelation function for surface 

in Figure 2

Figure 4  – Autocorrelation function for y=0 and the 

Gaussian approximation with σ = 2.5 mm

Figure 5  – Autocorrelation function for x = 0 and the 

Gaussian approximation with σ = 2.5 mm



Random errors on a reflector surface will scatter the 

field from the forward direction into the side lobe 

region thereby reducing the peak gain and increasing 

the side lobes. The standard Ruze formula (2), which is 

derived for a plane wave incident on a planar surface 

with a random distortion with 2c ≥ λ, states that the 

peak gain is reduced by the factor

Pplanar = e - ( 
4π εrms )

2

, for 2c ≥ λ. (2)

For a reflector antenna the equation must be changed to:

Paperture = e - ( 
2π δrms )

2

, for 2c ≥ λ.  (3)

where δrms  is the root mean square aperture error in 

metric units and 2π δrms /λ is the rms aperture field phase

error, see Figure 6. Notice, that this gain reduction is in 

the boresight direction, normally θ = 0°.

For a simple offset reflector as in Figure 6 the aperture 

error is found by:

δrms = (1 + cos (ν )) · εrms (4)

The disturbance of the RF field outside the main beam 

is also estimated by Ruze, where the average level of 

the distortion field in the sidelobe region is given by

Srefl = (
 2πc )

2
 · (

2π δrms )
2

· e - (π · sin (θ) )
2

· (c/λ)
2

, for 2c ≥ λ. (5)

where θ is the angle measured from the boresight 

direction.

Ruze equation for RF performance

Figure 7  – Ruze distortion field for random surface 

error with δrms = 0.02λ

Figure 6  – Aperture error for offset reflector

The relation is illustrated graphically in Figure 7  

for δrms = 0.02λ. Note that the distortion pattern is 

independent of the reflector size. The expression is not 

valid near the axis, θ = 0°, where instead equation (3) 

should be used.
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In this chapter the gain loss is calculated by both 

Physical Optics (PO), which is available in GRASP, and 

the Method of Moments (MoM), which is available in 

ESTEAM, and compared with those predicted by the 

Ruze equations above. The analysed reflector is a plane 

PEC plate at the frequency of 500 GHz corresponding 

to a wavelength λ = 0.6 mm. The side length of the 

square PEC plate is 12 mm (20λ). 

First, the plate is illuminated by a plane wave, which is 

the assumption for the Ruze equation, and secondly, 

by a tapered Gaussian beam.

Plane-Wave Illumination

The plate is illuminated by a plane wave orthogonally 

from the front as illustrated in Figure 8. 

For reference, the reflected far field from the plate 

with no surface distortions is calculated by both 

Method of Moments (MoM) and Physical Optics (PO). 

The result is shown in the first line in Table 1. Both 

MoM and PO give a directivity of 38.06 dBi and the 

patterns obtained with MoM and PO are identical. 

Gain-Loss Comparisons

Figure 8  – Distorted plate and plane-wave 

illumination

Peak loss as function of aperture error

Random errors on the reflector surface will scatter the 

field from the forward direction into the side lobe region 

thus reducing the peak gain and increasing the side lobes. 

The standard Ruze formula (2) states that the peak gain 

in the boresight direction is reduced by the factor

Paperture = e - ( 
2π δrms )

2

where it is assumed that 2c ≥ λ. The limitation of this 

equation regarding the size of the surface error εrms is 

investigated first. A value of c = 1.2 mm and thus 2c = 

4λ is selected and the surface roughness 

corresponding to the aperture errors of δrms = 0.063 λ 

to 0.251 λ is used in the calculations.  
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The scattered field is calculated by both MoM and PO 

and the resulting peak directivities are shown in columns 

5 and 7 of Table 1 for the MoM and the PO solutions, 

respectively. The loss relative to the non distorted 

surface is presented in columns 6 and 8. The gain 

losses as predicted by the Ruze equation in column 4 

show that for a distortion larger than an aperture error 

of δrms = 0.1λ the estimates by Ruze are too low. This is 

due to the arising 2nd order effects in the basic Ruze 

equation. The agreement between MoM and PO is 

very good for all aperture errors, see Figure 9.

We conclude that if the aperture error δrms > 0.1λ, 

Ruze’s equation for gain loss is inaccurate.

Loss as function of node spacing ns

In the following we will investigate five cases of 

different node spacings ns = 1.2, 0.6, 0.24, 0.12, and 

0.06 mm as shown in column 1 of Table 2. A peak value 

of εp = 0.04 mm giving a δrms = 0.032 mm and a gain loss 

of 0.7 dB according to Ruze is selected. The resulting 

surface shapes are illustrated in Figure 1. 
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Distortion
Peak
εp

Distortion
rms
εrms

Aperture
error
δrms

Ruze
gain

MoM solution PO solution

mm mm λ Loss dB Directivity dBi Loss dB Directivity dBi Loss dB

no dist. no dist. 0 0 38.06 0.00 38.06 0.00

0.04 0.019 0.063 0.67 37.38 0.68 37.38 0.68

0.06 0.028 0.094 1.52 36.51 1.55 36.51 1.55

0.08 0.038 0.125 2.69 35.26 2.80 35.26 2.80

0.1 0.047 0.157 4.21 33.56 4.50 33.56 4.50

0.12 0.056 0.188 6.06 31.35 6.71 31.36 6.70

0.14 0.066 0.219 8.25 28.51 9.55 28.52 9.54

0.16 0.075 0.251 10.78 24.80 13.26 24.82 13.24

Figure 9  – Peak loss as function of aperture error. 
Point distance c = 1.2 mm = 2λ

Table 1 – Peak directivity of the scattered beam as a function of the distortion peak. 
Node spacing ns = 1.2 mm = 2λ

It is clear that the assumption of a correlation distance 

larger than the wavelength, 0.6 mm, is not fulfilled for all 

correlation distances, as shown in column 2 of Table 2, 

and we can therefore not expect the Ruze formula to 

be valid for these correlation distances.

The scattered field is calculated by MoM and PO and 

the resulting peak directivities are shown in columns 4 

and 6 of Table 2 for the MoM and the PO solutions, 

respectively. The loss relative to the non distorted 

surface is presented in columns 5 and 7. The results 
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Table 2 – Peak directivity and loss of the scattered beam as a function of the node spacing ns. 
Surface roughness εrms = 0.032 λ

show that for node spacings of ns = 1.2 mm and 0.6 mm, 

where the diameter of the correlation region as defined 

by Ruze is larger than the wavelength, the agreement 

between MoM and PO is very good and the directivity 

loss is well predicted by Ruze. The difference in the 

results for ns = 1.2 mm and 0.6 mm is caused by the 

change of the number of sample points in the random 

surface distortion. To simulate a smaller correlation 

length, the number of random points must be increased. 

Decreasing the node spacing to ns = 0.24, 0.12, and 

0.06 mm leads to deviating results in the MoM and PO 

solutions, and for the most rough surface, c = 0.06 mm, 

the PO solution deviates significantly from the more 

correct MoM result as can be seen in Figure 10.

Another observation is that when the correlation 

distance becomes less than a wavelength, the loss in 

peak gain as predicted by the MoM analysis decreases 

and for ns = 0.06 mm it is only 0.06 dB. This behaviour 

can be explained by the following considerations.

If a plane wave illuminates a plane surface with periodic 

distortions with a period less than a wavelength, all the 

incident power will be reflected in the specular direction 

independent of the amplitude of the distortion. Imagine 

now that we make a Fourier expansion of the surface 

in Figure 8 for ns = 0.06 mm. This expansion will contain 

a number of harmonics with a period smaller than the 

wavelength which will therefore not contribute to the 

directivity loss. Only the harmonics with a period larger 

than the wavelength will contribute, and they will play a 

smaller role the faster the surface variations are. There- 

fore, the directivity loss decreases with decreasing c.

We conclude from the above that for 2c < λ , both PO 

and the Ruze gain loss equation give too large values 

and MoM must be used to calculate the radiation pattern.

Node 
spacing 

ns

Correlation
distance 

2c

Correlation
length

Lc

MoM solution PO solution
Ruze
gain

mm λ λ Directivity dBi Loss dB Directivity dBi Loss dB Loss dB

no dist. - - 38.06 0.00 38.06 0.00 -

1.20 4.00 1.6 37.38 0.68 37.38 0.68 0.67

0.60 2.00 0.8 37.42 0.64 37.43 0.63 0.63

0.24 0.80 0.32 37.48 0.58 37.39 0.67 0.67

0.12 0.40 0.16 37.86 0.20 37.38 0.68 0.68

0.06 0.20 0.08 38.00 0.06 37.38 0.68 0.67

Figure 10  – Peak loss as function of 
the correlation distance used by Ruze. 
Aperture error δrms = 0.064 mm



Tapered illumination

The influence of a tapered illumination, more similar  

to the feeds used in real-life reflector antennas, is 

investigated in this section. The flat plate from above is 

now illuminated by a Gaussian beam with six different 

waist sizes, w0, in the interval from 1 mm to 6 mm.  

The waists are located on the plate surface as 

illustrated in Figure 11.

This generates a tapered field on the plate with a 

constant phase, see Figure 12.
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Figure 12  – Field strength (black) and phase (red) 

of Gaussian beam at the surface of the plate. 

Waist size w0 = 3mm

Figure 11  – Random distorted plate illuminated by a 

Gaussian beam. The waist is located at the nominal 

surface of the plate
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Table 3 – Gain loss of the scattered beam as  
a function of tapered illumination, c=1.2 mm.

The random surface is created using εp = 0.04 mm and 

a node spacing ns = 1.2 mm. The assumption of a Ruze 

correlation region with a diameter greater than the 

wavelength of 0.6 mm is fulfilled, and we would 

therefore expect the Ruze gain-loss equation to be 

valid. and the PO and MoM gain calculations to be 

identically, which is shown in Table 3 and Figure 13.  

In Table 2 it was shown that Ruze’s formulation, which 

does not account for the taper, would predict a loss of 

0.67 dB for this case.  We can derive an “equivalent” 

Ruze aperture rms error that would lead to the same 

gain loss as predicted by PO, and this is shown in 

column 4 of Table 3.

It is evident that the aperture rms error, δrms, in the 

Ruze equation of the gain losses must be corrected 

with the weights given by a tapered illuminated field. 

The equivalent weighted and the unweighted aperture 

rms errors, δrms, as a function of the Gaussian beam 

waists are shown in Figure 14.

When the Gaussian beam waist increases giving a 

constant illumination of the plate, the weighted 

aperture error is approaching the total rms value.

The influence of the node spacing is considered by 

looking at the losses for five different node spacings, 

ns = 1.2, 0.6, 0.24, 0.12, and 0.06 mm using a tapered 

illumination. In order to get a low illumination at the 

plate edges and still have a reasonable plate size a 

beam waist radius of 1 mm is selected.

First, we investigate the case where the plate has no 

surface distortions. The reflected peak gain from the 

plate calculated by both Method of Moments (MoM) 

and Physical Optics (PO) is shown in the first line in 

Table 4. Both the MoM and the PO solution give a 

directivity of 23.45 dBi.

Waist 
radius 

w0

MoM 
solution

PO 
solution

Equivalent 
Ruze
δrms

mm Loss dB Loss dB λ

1.00 0.31 0.31 0.043

2.00 0.47 0.47 0.052

3.00 0.58 0.58 0.058

4.00 0.63 0.64 0.061

5.00 0.66 0.65 0.062

6.00 0.67 0.66 0.062

Figure 14  – Equivalent aperture errorFigure 13  – Loss in peak calculated with 
PO and MoM as function waist radius w0. 
Node spacing ns = 1.2 mm



Table 4 – Peak directivity of the scattered beam as a function of the node spacing, δrms = 0.064 λ.

The same random errors as for the previous plane 

wave illumination with a peak value of 0.04 mm are 

used in this case. The resulting peak directivities are 

shown in columns 3 and 5 of Table 4 for the MoM and 

the PO solutions, respectively. The loss relative to the 

non distorted surface is presented in columns 4 and 6.

As for the plane wave illumination the RF results show 

that for the node spacings ns = 1.2 mm and 0.6 mm, 

where the diameter of Ruze’s correlation region 2c is 

larger than the wavelength, the agreement between 

MoM and PO is very good. Changing towards a more 

rapidly varying surface distortion by decreasing the 

node spacing, specifically ns = 0.24, 0.12, and 0.06 mm, 

the MoM and PO solutions start to deviate and for the 

most rapidly varying surface distortions, ns = 0.06 mm, 

the convergence of the PO solution is simply not 

possible, see Figure 15. Furthermore, as in the plane 

wave illumination case, the peak directivity of the MoM 

result starts to increase when the correlation distance 

becomes less than a wavelength, and for ns = 0.06 mm 

the loss relative to the smooth surface is only 0.05 dB.  

From the losses in the PO calculation an equivalent 

value of the aperture rms error, δrms, can be found 

using the Ruze equation. Notice, that the large taper 

of the Gaussian beam introduces a weight in the rms 

function of the surface roughness giving different rms 

values for different correlation lengths The value in 

column 6 correspond very well to the rms error inside  

a surface region of 1.2*w0.

We conclude that Ruze’s formula must be corrected 

for realistic tapered illuminations, which can be done 

by applying a weighting, similar to the tapering, to the 

rms value of the distortions. The MoM should be used 

over PO for 2c < 0.8λ.

Node spacing 
ns

Correlation
distance 

MoM solution PO solution
Equivalent

Ruze
δrms

mm 2c/λ Directivity dBi Loss dB Directivity dBi Loss dB λ

no dist. - 23.46 0.00 23.45 0.00

1.20 4.00 23.15 0.31 23.14 0.31 0.043

0.60 2.00 23.00 0.46 22.99 0.46 0.052

0.24 0.80 22.93 0.53 22.89 0.56 0.057

0.12 0.40 23.30 0.16 22.78 0.67 0.063

0.06 0.20 23.31 0.15 22.73 0.72 0.065

Figure 15  – Peak loss as a function of the surface 
roughness, δrms = 0.064 mm
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Conclusion
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For the random surface model in GRASP, defined  

by the node spacing ns and the peak value εp, the 

relations to the right holds true.

If the aperture error δrms > 0.1λ, Ruze’s equation for 

gain loss is inaccurate.

If the diameter of the correlation region 2c < λ, both 

PO and the Ruze gain loss equation give too large 

values for plane-wave illumination and MoM must be 

used to calculate the radiation pattern.

Ruze’s formula must be corrected using a weighted 

rms value for the distortion for realistic tapered 

illuminations, while PO can be used for 2c > 0.8λ. 

For smaller values the MoM should be applied.

Random surface rms error: εrms = 0.47εp

Correlation length: Lc = 0.77 ns

Diameter of correlation region as defined by Ruze: 2c

Aperture rms error for offset reflector: δrms = (1 + cos (ν )) εrms

The Ruze gain loss as a function of the aperture error: 10 log e - ( 
2π δrms )

2

λ
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