
Full-wave Scattering from Reflector Antennas on
Electrically Large Platforms using low-Memory

Computers
Oscar Borries, Peter Demeyer, and Erik Jørgensen

TICRA, Copenhagen, Denmark
{ob,pd,ej}@ticra.com

Abstract—We consider the use of full-wave integral equation
techniques on scattering problems involving electrically large
structures, and consider how an implementation of such tech-
niques could use an inexpensive solid-state drive (SSD) rather
than costly random access memory (RAM). We begin by show-
ing how a Multi-level Fast Multipole Method (MLFMM) code
based on Higher-Order (HO) basis functions has fundamental
properties that make it feasible to use disk storage for the less
frequently used algorithm data. Then, we show how the use of
the SSD allows us to solve larger problems than the RAM of the
computing platform makes room for. Finally we consider how this
implementation has only a modest impact on the computational
time, particularly when compared to the reduction in financial
cost of SSD storage rather than RAM.

Index Terms—Integral Equations, MLFMM, Out-of-Core,
Higher-Order

I. INTRODUCTION

Design of antennas for many modern applications, particu-
larly as the pursuit of higher frequencies continues across a
wide range of applications, often requires detailed analysis of
the electromagnetic scattering. The scattering can be caused by
the passive parts of the antenna itself, but the most challenging
scattering problems are often encountered when taking into
account the surroundings of the antenna, in particular when
considering antenna placement, which can be electrically
extremely large.

Analysis of such scattering problems using limited computer
resources is a challenging problem, despite the impressive
progress in recent years in the area of computational electro-
magnetics. Even with the Multi-level Fast Multipole Method
(MLFMM) [1], which reduces the complexity from O(f4)
to O(f2 log f), where f is the frequency, modern compters
will still run out of memory fairly quickly. Indeed, although
the asymptotic complexity of an MLFMM implementation is
low, the required memory and time for antenna placement or
platform scattering problems can be high, particularly when
accurate solutions are required for geometrically complex
structures at high frequencies. While this has led to efficient
algorithms for algorithms designed for a specific type of
antenna, there are many applications where a general-purpose
MLFMM implementation is the only option.

MLFMM is by now a mature technology, although there
is still active research on improving various parts of the

textbook implementation. This includes the application of ad-
vanced computing platforms for MLFMM, such as distributed
computing [2] or Graphics Processing Units [3]. Regardless,
when using a laptop or even a desktop, the limited memory
availability means that the implementation should focus on
reducing the maximum memory footprint.

In this paper, we reduce the maximum memory by storing
MLFMM data on other media, a process called an Out-of-
Core (OoC) solution, contrary to an in-core solution where
only RAM is used for the data. After an initial overview of
MLFMM in Section II, we consider the cost and speed of
an SSD mounted via the NVMe interface. We then provide
several examples in Section IV that demonstrate that the total
solution time is not too heavily impacted by the use of an OoC
implementation, while the reduction in RAM use is substantial.

II. MULTILEVEL FAST MULTIPOLE METHOD

MLFMM achieves reduced complexity by grouping the
N basis functions in an integral equation discretization [4]
hierarchically, using the Octree algorithm [5], and letting larger
and larger groups interact over greater and greater distances.
The grouping is based on the center of the geometric elements
of the mesh, and the smallest allowed groups have sidelengths
not smaller than the largest geometric element in the mesh.

This splitting allows performing the matrix-vector product
as

Z I = ZnearI + F(I) (1)

where Znear is the near-matrix, containing the interactions
between basis functions that are too closely spaced to apply
MLFMM — the elements in this matrix are computed as in the
normal MoM approach. F denotes the operation perfomed by
applying MLFMM.

The interaction between two well-seperated basis functions
fj ,fi, belonging to groups m and m′ respectively, can be
computed by

Zj,i = κ

"
Rjm(k, k̂) ·

(
TL(k, k̂, rmm′)Vim′(k, k̂)

)
d2k̂,

(2)
with rmm′ = rm − rm′ , where rm is the center of group m,
and κ is a normalization constant. For EFIE, the basis function
signature Rjm(k, k̂p) = Vjm(k, k̂p)

∗ and

Vjm(k, k̂) =

ˆ
r2

fj(r) · [I − k̂k̂]e−jkk̂·(rm−r) d2r, (3)

and Rokhlins translation function TL [6] is computed as

TL(k, k̂,x) =

L∑
l=0

(−j)l(2l + 1)h
(2)
l (k|x|)Pl(k̂ · x̂), (4)

where k̂ is the unit wave vector, x is the vector between
two group centers directed towards the receiving group, x̂ =

x/|x|, h(2)l is the spherical Hankel function of second kind
and order l, and Pl is the Legendre polynomial of order l. TL
should be computed as shown in [7].

Discretizing (2), we get

Zj,i = κ

K∑
p=1

wpRjm(k, k̂p) ·
(
TL(k, k̂p, rmm′)Vim′(k, k̂p)

)
.

(5)
Here, wp are the integration weights.

III. HIGHER-ORDER MLFMM

One way of reducing the memory in an integral-equation
solver in general, and MLFMM in specific, is to apply Higher-
Order (HO) basis functions [8], which greatly reduce the
required number of unknowns N by increasing the order of
the polynomial basis functions used to represent the surface
current density.

For the Method of Moments (MoM), which requires at least
O(N2) = O(f4) memory and time, even modest reductions
of N allow significant savings. In particular, MoM based on
hierarchical HO basis functions is well-suited for problems
requiring high accuracy, since the basis function order can
be increased to achieve exponential improvement in accuracy,
allowing high accuracy at the expense of a very moderate
increase of N . This feature is not shared by implementations
based on first-order basis functions, such as RWG [9].

Combining HO basis functions with MLFMM was done
in [10]. This work resulted in a HO MLFMM algorithm
with O(f2 log f) scaling and also strong scaling against
increasing accuracy requirements and geometric complexity,
which is challenging because using HO basis functions lead
to increased group sizes and therefore increased L in (4) and
K in (5).

Further, as discussed in [10], a number of details in the
MLFMM implementation have been tweaked to allow lower
memory requirements and/or higher computation speeds with-
out reducing the accuracy.

A. Out-of-Core

The concept of Out-of-Core (OoC) means the application of
storage that is slower, but cheaper, than Random Access Mem-
ory (RAM). The point of OoC is thus clear - store rarely used
data on a cheap medium, reducing the memory requirements
of the solver, though at the expense of longer read/write times
when accessing that data. In recent years, tremendous advances
have been made in the read/write speeds of cheap storage
media, making OoC implementations increasingly relevant.

The application of Out-of-Core storage to reduce the mem-
ory requirement in connection with MLFMM has previously

been discussed briefly in the literature. Storing the near-matrix
OoC was treated in [11, Section V] and [12] discussed OoC
storage of the MLFMM basis function patterns. However, in
this paper, we present results for the simultaneous OoC storage
of all of the following components:
• Near-matrix,
• Preconditioner,
• Basis function patterns,
• GMRES Solver storage,

as we previously reported in [13], but with several improve-
ments being made since then to greatly increase the speed of
the OoC implementation.

We stress that MLFMM based on HO basis functions is
particularly well suited for OoC storage, because HO MLFMM
changes how the MLFMM memory is used, compared to low-
order MLFMM. For OoC, HO MLFMM has two advantages
over MLFMM based on RWG basis functions.

First, the memory use of an HO MLFMM code lies pre-
dominantly in the four items listed above which are used only
once or twice per iteration, while a MLFMM code based on
RWG has memory spread over a wider set of data, including
translation operators and interpolation data, that is used many
times per iteration. That means that the relative reduction from
using OoC is greater for HO MLFMM than for RWG-based
MLFMM.

Second, the components above, particularly the near-matrix
and the preconditioner, lead to the lowest time penalty when
using OoC. This is because the near-matrix and preconditioner
can be read in chunks, used and then discarded, without
affecting the total memory footprint and with a very easily
controlled balance between memory and speed. This is in
contrast with RWG implementations where the basis function
patterns are costly — for such implementations, OoC will be
much more costly in terms of computation speed. Further, our
use of the modifications detailed in [10, Section III] allows a
significant reduction in the amount of data to be transferred
to/from the disk in an OoC implementation.

B. Simulation setup and costs of computing resources

We emphasize that to find reliable values for the time
required for OoC, one cannot simply run an OoC simulation
on a machine that has sufficient memory for an in-core run.
Many operating systems will cache file I/O to memory and
thus, in some cases, will provide overly optimistic timings
for Out-of-Core simulations, because the operating system is
simply using the memory (rather than disk) behind the back
of the user.

Therefore, all results in this paper are based on running the
simulation on a system with sufficient memory for an in-core
simulation, and then physically removing the memory from
the computer, before running the Out-of-Core simulation. This
makes the reduction in available memory the only hardware
change between the in-core and Out-of-Core runs.

Further, an important point is the cost of computing re-
sources. The point of OoC is that the financial cost of the
storage media is much lower than the cost of RAM while

TABLE I
COMPARISON OF PRICE AND SPEED FOR DIFFERENT STORAGE MEDIA.

DDR4 Ram NVMe
Price pr. GB [USD] 11 0.25
Read/Write speed [GB/s] 20 3

only being moderately slower. In Table I, we see a comparison
between the DDR4 RAM used for in-core computations and
an SSD that can be mounted via the NVMe interface. The
prices and read/write speeds are to be taken qualitatively —
the point of this paper is not to provide an in-depth analysis
of the practically obtainable read/write speeds, nor perform a
detailed review of internet pricing of computer hardware.

As the table shows, storage on an SSD mounted via the
NVMe interface is about 40 times cheaper than DDR4 RAM,
but the read/write speed is 6 – 7 times slower. Further, as
discussed above, only a modest percentage of the time in
an HO MLFMM implementation will be spent accessing the
OoC components, so that factor of 6 – 7 should not affect
run-time significantly. The following experiments will test the
performance on a few different cases.

IV. RESULTS

All results in this paper are produced on a HP DL380 Gen9
computer, with 2 Intel Xeon E5-2690 processors @ 2.6 GHz,
DDR4 RAM @ 2133 MHz.

In TICRAs software ESTEAM, the possible use of disk
storage can automatically be determined when allowed so
by the user. If the computer has sufficient memory to run
the scattering problem in-core, no disk storage is used. If
there is insufficient memory available, and the user allows it,
ESTEAM will store some (or all) of the components listed
in Section III-A on the disk. This allows the lowest possible
computation time for a given machine, while still ensuring that
the problem will run.

A. Reflector

We begin by considering a canonical reflector case. A 1m
diameter circular paraboloidal reflector system is illuminated
by a simple gaussian beam placed in the focal point 0.6m
away from the center of the reflector. We consider a frequency
of 250GHz, where the electrical size of the reflector is
569, 231λ2, discretized with patches of sidelength up to 1.5λ.
This results in 15.5 million Higher-Order unknowns, with up
to 5th order polynomials used on each patch.

The results are reported in Table II, although we stress that
at these frequencies, the analysis would be done much more
efficiently by applying Physical Optics, perhaps augmented
with the Physical Theory of Diffraction. Thus, the intent
here is only to provide a configuration that can be scaled in
frequency in a simple way.

From the table we see clearly the benefits of Out-of-Core.
A reduction of a factor of 6 in memory, while the increase in
computational time is fairly modest, although noticeable.

TABLE II
PERFORMANCE OF OUT-OF-CORE SIMULATION OF THE REFLECTOR IN

SECTION IV-A.

In-core Out-of-core
Memory 162 GB 27 GB
Disk 0 GB 135 GB
Time pr. iteration 2 min 3 min
Total time 102 min 152 min

Fig. 1. Satellite platform used in Section IV-B.

B. Satellite Platform

We examine a fairly primitive satellite platform, including
solar panels, as shown in Figure 1. The platform is illuminated
by a theoretical feed, intended to illuminate an on-board
reflector (not shown). With the solar-panels deployed, the
maximum width is about 24 meters, making for a challenging
simulation problem at 30 GHz.

The scattering problem has just shy of 17 million Higher-
Order unknowns, corresponding to about 85 million RWG
unknowns, with polynomials up to 5th order being used
on each patch. The electrical surface area is 757,533 λ2.
The satellite body is discretized as a closed scatterer, using
the CFIE, while the solar panels are modified as infinitely
thin using the EFIE. The convergence is very fast using an
inner-outer GMRES solver [14], achieving convergence in 7
iterations.

We see from Table III that the reduction of memory from
305 GB to 57 GB is substantial, as the most memory de-
manding parts of the MLFMM implementation are put on
the NVMe SSD. The time per iteration is roughly doubled,
but with convergence being achieved rapidly, the total time is
increased by only about 60%.

C. Feed Array on Satellite Platform

The final example is a more realistic satellite platform, based
on a detailed model used for test purposes at TICRA, and
originally given by Marco Sabbadini of ESTEC. The satellite
is analyzed at 40GHz where it is electrically quite large,
1, 863, 702λ2, requiring nearly 31 million HO unknowns,
corresponding to about 150 million RWG unknowns. The
structure is illuminated by two orthogonal modes originating

TABLE III
PERFORMANCE OF OUT-OF-CORE SIMULATION OF THE 750 · 103λ2

SATELLITE PLATFORM IN SECTION IV-B.

In-core Out-of-core
Memory 305 GB 57 GB
Disk 0 GB 248 GB
Time pr. iteration 10 min 20 min
Total time 170 min 290 min

Fig. 2. Surface current distribution as the result of the MLFMM solution.
Section IV-C.

TABLE IV
PERFORMANCE OF OUT-OF-CORE SIMULATION OF THE 1.9 · 106λ2

PLATFORM IN SECTION IV-C.

In-core Out-of-core
Memory 530 GB 145 GB
Disk 0 GB 385 GB
Time pr. iteration 40 min 88 min
Total time 990 min 1780 min

from a horn in the feeding array, which results in two right-
hand sides, solved simultaneously using a GMRES solver with
deflation.

As seen in Table IV, the difference in memory requirement
is now about 400 GB, which can be decisive in whether or not
it is possible to run the simulation on the available hardware.
The increase in computational time is obviously unfortunate,
but if the alternative is not to run the simulation at all, the
computational time is likely acceptable.

V. CONCLUSION

While most of the published scientific research on large-
scale scattering problems has focused on solving large prob-
lems as quickly as possible, this paper has explored a different
scenario: Solving as large problems as possible as cheaply
as possible. The economic cost of computing hardware is
obviously of practical importance and, in many cases, the
computing hardware is fixed. Thus, in the hunt for solving
larger and larger problems, we must instead utilize as much
of the existing hardware as possible.

In this paper, we used an NVMe mounted SSD and
demonstrated that the computation speed does not suffer as
much as one could expect. Further, we noted that the NVMe
SSD is much cheaper per GB of storage than purchasing
the corresponding DDR4 memory. Thus, with an efficient
HO MLFMM implementation, adding Out-of-Core capabilities
allows for much bigger problems to be solved in reasonable
time on a cheaper computer. This has been done in TICRAs
antenna siting and placement software ESTEAM, which has
produced all results in this paper.

REFERENCES

[1] C.-C. Lu and W. C. Chew, “A Multilevel Algorithm for Solving a
Boundary Integral Equation of Wave Scattering,” Microwave and Optical
Technology Letters, vol. 7, no. 10, pp. 466–470, Jul. 1994.

[2] S. Velamparambil and W. C. Chew, “Analysis and Performance of
a Distributed Memory Multilevel Fast Multipole Algorithm,” IEEE
Transactions on Antennas and Propagation, vol. 53, no. 8, pp. 2719–
2727, Aug. 2005.

[3] J. Guan, S. Yan, and J.-M. Jin, “An OpenMP-CUDA Implementation of
Multilevel Fast Multipole Algorithm for Electromagnetic Simulation on
Multi-GPU Computing Systems,” IEEE Transactions on Antennas and
Propagation, vol. 61, no. 7, pp. 3607–3616, Jul. 2013.

[4] R. F. Harrington, Field Computation by Moment Methods. New York:
MacMillan, 1968.

[5] D. Meagher, “Geometric modeling using octree encoding,” Computer
Graphics and Image Processing, vol. 19, no. 2, pp. 129–147, Jun. 1982.

[6] V. Rokhlin, “Diagonal Forms of Translation Operators for Helmholtz
Equation in Three Dimensions,” Yale University, Tech. Rep., 1992.

[7] I. Hänninen and J. Sarvas, “Efficient Evaluation of the Rokhlin Trans-
lator in Multilevel Fast Multipole Algorithm,” IEEE Transactions on
Antennas and Propagation, vol. 56, no. 8, pp. 2356–2362, Aug. 2008.

[8] E. Jørgensen, J. Volakis, P. Meincke, and O. Breinbjerg, “Higher Order
Hierarchical Legendre Basis Functions for Electromagnetic Modeling,”
IEEE Transactions on Antennas and Propagation, vol. 52, no. 11, pp.
2985–2995, Nov. 2004.

[9] S. M. Rao, D. R. Wilton, and A. W. Glisson, “Electromagnetic Scattering
by Surfaces of Arbitrary Shape,” IEEE Transactions on Antennas and
Propagation, vol. 30, no. 3, pp. 409–418, May 1982.

[10] O. Borries, P. Meincke, E. Jørgensen, and P. C. Hansen, “Multi-level Fast
Multipole Method for Higher-Order Discretizations,” IEEE Transactions
on Antennas and Propagation, vol. 62, no. 9, pp. 4695–4705, Sep. 2014.

[11] I. van den Bosch, M. Acheroy, and J.-P. Marcel, “Design, Implementa-
tion, and Optimization of a Highly Efficient Multilevel Fast Multipole
Algorithm,” in Computational Electromagnetics International Workshop.
IEEE, 2007, pp. 1–6.

[12] M. Hidayetoğlu and L. Gürel, “MLFMA memory reduction techniques
for solving large-scale problems,” Antennas and Propagation Society
International Symposium, pp. 749–750, 2014.

[13] O. Borries, E. Jørgensen, and P. Meincke, “Solution of electrically large
scattering problems on a laptop,” in IEEE Antennas and Propagation
Symposium, 2015.

[14] T. F. Eibert, “Some Scattering Results Computed by Surface-Integral-
Equation and Hybrid Finite-Element—Boundary-Integral Techniques,
Accelerated by the Multilevel Fast Multipole Method,” IEEE Antennas
and Propagation Magazine, vol. 49, no. 2, pp. 61–69, Apr. 2007.

	Introduction
	Multilevel Fast Multipole Method
	Higher-Order MLFMM
	Out-of-Core
	Simulation setup and costs of computing resources

	Results
	Reflector
	Satellite Platform
	Feed Array on Satellite Platform

	Conclusion
	References

