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Abstract—Many modern antenna systems, particularly for
applications in telecommunication or earth observation, have
significant mechanical complexity. This entails an often lengthy
and detailed design process, where the design is carefully revised
to ensure the best performance for the intended application. In
particular, the electrical design often needs to take into account
uncertainties in the mechanical design. In this paper, we present
an efficient way of quantifying the effects of uncertainties by
using electromagnetic simulation of the antenna design with
mechanical uncertainties added to the model of the antenna.
The methods shown here far outperform the conventional Monte-
Carlo techniques, both in terms of accuracy and computational
time.

I. INTRODUCTION

Designing antenna systems for modern telecommunication
or earth observation applications entails stringent performance
requirements and strict error budgets. As the systems become
increasingly complex and involve many subsystems, the need
for accurate and reliable quantification of the imperfections
involved in the error budgets becomes greater and greater.
In particular, for concepts such as unfurlable reflectarrays
or unfurlable reflectors, where in-flight deployment is used,
detailed mechanical and thermal studies are required, all of
which provide parameter ranges rather than specific parameter
values.

Modern computational electromagnetics software makes it
possible for the RF engineer to simulate a large number of the
mechanical designs, and in some cases the software can allow
fully automatic optimization to attain optimal performance.
However, when it comes to quantifying the uncertainty, i.e.,
the performance degradation introduced by mechanical imper-
fections, the engineers are on their own.

If the engineers apply some form of uncertainty analysis,
most will resort to simply running a very large number of
simulations with random errors added sporadically to the
system, and then perform some statistical examination on that
data, a so-called Monte-Carlo simulation. The downsides to
this approach are clear: A very large number of simulations
is required, and the risk of user error is high. Further, as
we will show later, the statistical accuracy is extremely poor,
which could cause misleading conclusions about the final
performance when the antenna is deployed.

This paper presents an alternative approach. The user is
required to specify how the errors manifest themselves in the

system, e.g. surface errors on the reflectors or an undesired
reflector tilt, inaccurate mounting or phase errors in the feed,
and so on. Based on this input, the algorithm automatically
determines the uncertainty of the output parameter of interest,
e.g. peak directivity, return loss or even full radiation patterns,
with accuracy that far surpasses the simple Monte-Carlo
approach.

The paper is structured as follows. After an introduction
to Uncertainty Quantification (UQ) in Section II, including
a demonstration of how these algorithms greatly outperform
Monte-Carlo sampling, we present a number of test cases in
Section III that illustrate how the method is able to quantify
the performance uncertainty caused by geometrical errors in
the design.

II. MATHEMATICAL UNCERTAINTY QUANTIFICATION

Uncertainty Quanfication (UQ) has in the recent years seen a
significant increase in interest within the applied mathematics
community, particularly due to progress made in areas such
as stochastic collocation.

The fundamental question that UQ attempts to answer is:

Given a function F(X), where X is a vector of
D stochastic elements, characterize the behaviour of
F(X).

How to characterize the behavour, however, is not straight-
forward. The traditional approach is the Monte-Carlo method,
which simply samples the function ' a large number of times
by picking X according to the distribution of its elements.
Aside from being very simple to implement, the Monte-Carlo
method has the advantage that its convergence rate is LM,
where M is the number of evaluations of F, and thus the
convergence speed is independent of the number of parameters
D in the X vector.

The drawback, however, of Monte-Carlo is that in practice,
ﬁ is simply far too slow for many applications, in particular

scenarios where high accuracy is needed, where F'(X) is time-
consuming to evaluate, and/or where the number of parameters
D is not large. This drawback can be understood by consid-
ering Monte-Carlo as a piece-wise constant approximation to

the cumulative distribution function of F'(X).



To improve on the Monte-Carlo performance, methods
based on higher-order approximation such as Stochastic Collo-
cation (SC) or Polynomial Chaos Expansion (PCE) offer a far
better convergence rate for a moderate number of parameters
D, while only being slightly more complicated to implement.

Stochastic collocation is done by approximating the mo-
ments of the function F' by numerical integration:
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In this notation, gx ) is the distribution function for the 7’th
element in X, and a® and b are the limits of this distri-
bution function. The most common distributions are shown
below:

Distribution  gx (z) [a, b]
Normal \/%eﬂ [—00, 0]
Uniform 3 [-1,1]
Exponential e™* [0, o]

Polynomial Chaos Expansion is done by approximating the
behaviour of the function F' by orthogonal polynomials, cho-
sen according to the Wiener-Askey scheme. The details are
found in [1], [2], [3].

Regardless of whether stochastic collocation or polynomial
chaos expansion is used, uncertainty quantification allows for
a range of statistical estimates to be obtained:

e Mean performance: What is the expected (mean) per-

formance of the system?

o Variation in performance: What is the variation in the

performance of the system?

o Deviation from nominal: How does the expected per-

formance deviate from the nominal performance?

« Confidence intervals: With a-percent certainty, how will

the system perform?
These estimates are often required when designing antennas
for industrial applications. Further, if polynomial chaos ex-
pansion is used, the so-called Sobol indices can be computed,
which can then answer the question

« Partial variance: How much of the variation in perfor-

mance is caused by a specific variable?
This has a range of benefits in terms of cost-based reduction
of uncertainty, see. e.g. [2]. For instance, if it turns out that a
single variable is responsible for, say, 80% of the variation
in the performance, it is clear that it will be worthwhile
increasing the reliability of that variable.

From a numerical standpoint, the difference in practice be-
tween the convergence rate of Monte-Carlo (MC) and higher-
order methods (SC or PCE) is extreme for a moderate number
of unknowns. We will demonstrate this with an example,
inspired by [2].
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Fig. 1. A comparison of the convergence rate for Monte-Carlo and Stochastic
Collocation when used to determine the mean of the stochastic Ishigami
function (3).

Consider the so-called Ishigami function of the stochastic
variables x1, xo, T3:

f(@) = sin(x1) + asin®(x2) + baj sin(x;) 3)

where x1, 2,23 are uniformly distributed between [—m,7].
The expected value and variance can be computed analytically
based on (1) and (2), giving py = a/2 and Jf =1/2+4+a?/8+
bt /5 + b27® /18. Based on this, we can examine the number
of function evaluations required for convergence of e.g. the
mean, as shown in Figure 1, for a = 3 and b = 5.

The results clearly show the points raised above concerning
the difference in performance between MC and higher-order
UQ methods —MC converges extremely slowly, and requires
several orders of magnitude more evaluations than Stochastic
Collocation, even when considering only modest accuracy
levels of about 102 relative error. If better accuracy than
that is needed, which is particularly relevant when considering
wide (e.g. 99%) confidence intervals, then Monte-Carlo is
simply not a realistic option.

III. RESULTS

With these conclusions in mind, we will now look at three
cases where we apply uncertainty quantification to antenna de-
signs where manufacturing or deployment issues are important
to take into account when designing the antenna. We note that
all simulations are performed on a 2016 Macbook Pro laptop.

A. Unfurlable Mesh Reflector

We consider an unfurlable mesh reflector at C-band. The
specific configuration is shown in Figure 2, where a triangular
mesh is shown with black lines. The nodes of the mesh sit
exactly on the surface of the nominal parabolic reflector, and
these nodes are connected by planar triangles. For the specific
antenna, the offset nominal reflector has a projected aperture
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Fig. 2. An illustration of the meshed reflector analysed in Section III-A.

diameter of 4.7 m, a focal length of 3.3 m, and a clearance of
1.15 m; the frequency is 6.9 GHz. For the mesh reflector, we
consider a uniform hexagonal mesh with triangle side length
of 0.5 m [4].

Unfurlable antennas present a range of mechanical issues in
order to achieve satisfactory and indeed reliable performance,
and thus represent a relevant showcase for the potential of
higher-order UQ techniques in antenna design.

We begin by varying the mounting angles of the reflector,
imagining a scenario where the unfolding of the reflector
relative to the feed has, in some way, produced an angular
distortion of the reflector. At the bottom of Figure 2, the
coordinate system indicates the imagined anchor point of the
reflector, and we rotate the reflector both around the blue
axis and the green axis, letting those two angles be uniformly
distributed between +0.1°.

The uncertainty quantification algorithm runs in about a
minute on a laptop, with each seperate analysis of the con-
figuration analysed using TICRAs software GRASP, apply-
ing Physical Optics augmented by the Physical Theory of
Diffraction. The result is shown in Figure 3 which shows
the co-polar component in the ¢ = 0 plane. We notice quite
large confidence intervals, indicating that the performance is
quite sensitive to the uncertainty in mounting angles. This is
particularly pronounced for the innermost sidelobes, while the
interval is smaller for the grating lobe [4] that is seen around
0 = —10°.

We then move to consider uncertainty in the mesh nodes of
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Fig. 3. Effects on the co-polar pattern in the ¢ = 0 plane as uncertainty is
introduced to the mounting angles.
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Fig. 4. Effects on the cx-polar pattern in the ¢ = 90° plane as uncertainty
is introduced to the mesh surface nodes.

the triangular, considering a scenario where each of the 127
nodes are displaced independently in z, with a +30 micron
uniformly distributed uncertainty. Now, the analysis requires
3:30 minutes and the result is shown in Figure 4, where
we consider the cx-polar component in the ¢ = 90° plane.
The variation of the cx-polar component for the considered
uncertainty in the mesh surface nodes is extremely small,
revealing a robustness of the antenna performance to the exact
node positions.

B. Reflectarray

We then move to consider a reflectarray discussed in the
literature [5], a planar array with specifications as described
in Table 1. The reflectarray elements are optimized to provide
a high gain over a European coverage, as illustrated by Fig. 5.



TABLE I
REFLECTARRAY DATA

Center frequency 10 GHz
Frequency range 9 — 11 GHz
Number of elements 50 x 50
Reflectarray dimensions | 600 mm X 600 mm
Relative permittivity er = 3.66
Substrate thickness d =1.524 mm
Loss tangent tand = 0.0037
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Fig. 5. Co-polar radiation pattern of the reflectarray specified in Table 1.

We consider the effect of adding an uncertainty to the
size of the square elements, such that a small deviation from
the optimized sizes are added, uniformly distributed in the
range £0.03 mm, resulting in D = 2500 variables. We then
consider the resulting uncertainty in the co-polar and cx-polar
levels, applying the UQ algorithm requiring 7501 evaluations
to converge. Due to the fast analysis algorithm [5], the entire
UQ task requires less than two hours of computation time on
a laptop.

The resulting 95% confidence interval for the minimum
directivity in the coverage is 27.340.02 dB. For most applica-
tions, this would be a very low sensitivity of the directivity to
small uncertainties in the manufacturing. This result allows us
to conclude that errors in the manufacturing of the elements
will not significantly impact the performance of the array.

We then consider uncertainty of the relative permittivity of
the dielectric substrate, for ¢, distributed as U(3.56,3.76),
which means only a single variable and thus only a few simu-
lations are necessary to produce the uncertainty quantification,
requiring less than a minute of simulation time. The resulting
uncertainty is shown in Fig. 6, demonstrating that the value
of the relative permittivity significantly impacts the resulting
pattern.

C. Full reflector antenna system

As the final case, we consider a full reflector antenna
system including feeding network, horn and reflector antenna,
illustrating how the UQ algorithm can be used together with
an advanced Generalized Scattering Matrix [6] framework to
efficiently characterize the performance for the entire system
as a function of changes in a subsystem.
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Fig. 6. Mean, 95% confidence interval and nominal (¢; = 3.66) pattern for
the reflectarray when the relative permittivity €4 of the dielectric substrate is
uniformly distributed U (3.56, 3.76). The performance of the reflectarray is
clearly sensitive to €4. Marked in yellow is the coverage area (the red zone
in Fig. 5.
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Fig. 7. Half of the feed network, with the other half obtained by mirroring
along the open portion of the polariser and square-to-circular transition. Taken
from [6].

The system is a feed chain and reflector assembly, intended
for use as a Ku-band VSAT terminal. The reflector is a 1 m
diameter rotationally symmetric antenna operating at 12.5 —
12.75 GHz for Rx and 14.0 — 14.25 GHz for Tx. The feeding
network is illustrated in Figure 7, showing one of the diplexers
with coax ports in a split view. The network produces RHCP
in Tx and LHCP in Rx, with filters employed to improve the
isolation. An illustration of the entire antenna is shown in
Figure 8.

We add uniformly distributed variations of +0.5 mm to
step heights in the septum polariser shown at the top left side
of Figure 7, and compute the effects on the peak directivity



Fig. 8. The complete antenna, with the full feed network shown at the bottom,
for the case in Section III-C. Taken from [6].

of the entire system at Rx. This requires about 20 minutes
of computation time, providing a 95% confidence interval of
[39.38,39.42] dBi.

IV. CONCLUSION

With state-of-the-art computational electromagnetics
solvers, engineers are able to design increasingly complex
high-performance antenna systems. However, when such
systems are produced, the deviations from the computational
model will result in performance degradation that the engineer
should have taken into account earlier. When augmented
with the UQ algorithms outlined above, which far surpass
the performance of simple Monte-Carlo implementations,
computational electromagnetics solvers will be able to guide
engineers to produce antennas that will perform as good in
practice as they did on the computer.
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