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Abstract—Reflectarray antennas for space applications involve
a large number of elements with varying sizes to be printed
on a dielectric substrate. Due to the manufacturing process, the
fabricated reflectarray might have significant deviations from the
desired design. This paper demonstrates an efficient method that
allows the antenna designer to accurately predict the impact of
manufacturing deviations on the performance of the reflectarray.

I. INTRODUCTION

The use of reflectarrays for space applications has been
studied intensively in recent years, giving rise to a range of
potential application scenarios where reflectarrays and other
quasi-periodic structures are more appealing than traditional
antenna designs such as reflector antennas.

For space applications, quantifying the uncertainty in per-
formance of the produced reflectarray is critical to ensure that
the mission is succesful. In this paper, we make use of modern
tools from the mathematical uncertainty quantification theory
and combine them with state-of-the-art simulation software
for quasi-periodic antennas to allow accurate and efficient
uncertainty quantification.

II. MATHEMATICAL UNCERTAINTY QUANTIFICATION

Uncertainty Quanfication (UQ) has been a subject of study
in the applied mathematics community for several decades,
and has in the recent years seen a significant increase in
interest, particularly due to progress made in areas such as
stochastic collocation.

The fundamental question that UQ considers is:

Given a system where the behaviour can be modelled
as F (X), where X is a vector of D stochastic ele-
ments, characterize the uncertainty of F (X).

In this formulation, characterizing the uncertainty typically
involves gathering data such that the following questions can
be answered:
• Mean performance: What is the expected performance

of the system?
• Variation in performance: What is the variation in the

performance of the system?
• Deviation from nominal: How does the expected per-

formance deviate from the intended performance?
• Confidence intervals: With α-percent certainty, how will

the final system perform?

The traditional approach to answering these question is the
so-called Monte-Carlo method, which simply samples the
function F a large number of times by picking X according
to the distribution of its elements, and then looks at the
distribution of the output.

Aside from being very simple to implement, the Monte-
Carlo method has the theoretical advantage that its conver-
gence rate is independent of the number of parameters D in the
X vector. The main drawback, however, of Monte-Carlo is that
in practice, the obtained statistical estimates are too inaccurate,
particularly when applying costly simulation methods and/or
when considering sensitive output parameters such as return
loss, cx-polar performance, etc.

An alternative is the approach known as stochastic colloca-
tion, which approximates the moments of the function F by
numerical integration:

Expected value : E(F (X)) = µF (1)

=

∫ b(1)

a(1)

∫ b(2)

a(2)
. . .

∫ b(D)

a(D)

gX(X)F (X)dX,

Variance : Var(F (X)) = σ2
F (2)

=

∫ b(1)

a(1)

∫ b(2)

a(2)
. . .

∫ b(D)

a(D)

gX(X)F 2(X)dX − µ2
F .

In this notation, gX is the D-dimensional distribution function
for X , and a(i) and b(i) are the limits of this distribution
function. The most common distributions are shown below:

Distribution gX(x) [a, b]

Normal 1√
2π
e

−x2

2 [−∞,∞]

Uniform 1
2 [−1, 1]

Exponential e−x [0,∞]

A. Numerical implementation

Computing the D-dimensional integrals (1) and (2) in an
efficient manner is a key factor in achieving satisfactory per-
formance when compared to e.g. Monte-Carlo. It is important
to stress that while an efficient implementation of any UQ
algorithm requires careful consideration of many numerical
details, the dominant factor in performance for our application
is implementation of efficient multi-dimensional integration
rules. This is particularly true as D increases and as F (X)
has a more complex behaviour.

Efficient multi-dimensional integration grids can be ob-
tained through the use of sparse grids, which employ
Smolyak’s l’th order tensor combination of one-dimensional



TABLE I
REFLECTARRAY DATA

Center frequency 10GHz
Frequency range 9− 11GHz

Number of elements 50× 50
Reflectarray dimensions 600 mm × 600 mm

Relative permittivity εr = 3.66
Substrate thickness d = 1.524 mm

Loss tangent tan δ = 0.0037

Fig. 1. Optimized co-polar radiation patterns of the reflectarray specified in
Table I.

rules [1, Section 3.2.2]. The computational complexity of
algorithms based on sparse grids is discussed in detail in
[2], but suffice it to say that the number of integration points
scales as 2l N

D

D! , where N is the order of the one-dimensional
sampling rule and l is the order of the grid. Since 2l � D!,
sparse grids yield far fewer points that the traditional tensor
product rules where the number of points scale as ND.

For D & 100, even sparse grids can require too many
integration points. In particular, if F (X) behaves reasonably
simple in the domain of interest (for instance because the
quality of the manufacturing process is high enough for the
intended application such that the output is not too sensitive),
the high accuracy of grid-based methods such as sparse grids
might not be necessary. In this implementation, we apply the
Stroud rules [3] of second and third order, which require D+1
and 2D evaluations, respectively, and consider whether the
integral has converged based on these two rules. If the integral
has not converged, we then apply sparse grids.

III. RESULTS

We consider a reflectarray previously discussed in the
literature [4], a planar array with specifications as described in
Table I The elements have been optimized to provide a high
gain over a European coverage, as shown in Fig. 1.

We begin by considering the effect of adding an uncertainty
to the size of the square elements, such that a small deviation
from the designed sizes are added, uniformly distributed in the
range ±0.03 mm, resulting in D = 2500 variables. We then
consider the resulting uncertainty in the co-polar and cx-polar
levels, applying the UQ algorithm requiring 7501 evaluations

−10 −5 0 5 10
10

15

20

25

30

θ [◦]

|E
|[

dB
]

Mean
95% conf.
Nominal

Fig. 2. Mean, 95% confidence interval and nominal (εd = 3.66) pattern for
the reflectarray when the relative permittivity εd of the dielectric substrate
is uniformly distributed U(3.56, 3.76). The deviations in the pattern are
substantial, and thus the performance of the reflectarray is quite sensitive
to εd. Marked in yellow is the coverage area (the red zone in Fig. 1.

to converge. Due to the fast simulation method as described in
[4], this task requires last than two hours of total computation
time on a laptop.

The resulting 95% confidence interval for the minimum
directivity in the coverage is 27.3± 0.02 dB, in other words,
a very low sensitivity of the directivity to small uncertainties
in the manufacturing. This allows us to conclude that imper-
fections in the printing of the elements will not significantly
impact the performance of the array, a conclusion that can be
very important in the design phase of an antenna system.

We then move to consider uncertainty of the relative
permittivity of the dielectric substrate, for εr distributed as
U(3.56, 3.76), which means D = 1 variable and thus the
complete uncertainty quantification is completed in less than
a minute. The resulting uncertainty is shown in Fig. 2,
clearly demonstrating that the value of the relative permittivity
significantly impacts the resulting pattern.
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