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Abstract—The shaping of reflector antennas in geostationary
orbit to attain contoured beams on earth is most often done by
solving a minimax optimization problem based on a Physical
Optics analysis of the reflector antenna gain, cx-pol, e.t.c. Un-
fortunately, this optimization problem can be highly non-linear,
leading to slow convergence and many local minima, particularly
for poor starting guesses.

In this paper, it is shown how better designs that more closely
fulfill the optimization goals and are more stable towards poor
starting guesses can be obtained by preceding the minimax opti-
mization with the solution of another, closely related, optimization
problem.

I. INTRODUCTION

Design of antennas intended to provide a contoured beam
from a geostationary orbit requires a numerical optimization to
provide strong performance. Optimization is used to produce
the desired coverage by means of surface shaping, excitation
coefficients, feed orientation, or a range of other possible
optimization variables. The goal of the optimization is to
produce an antenna configuration that meets one or several
specified goals on the performance in the coverage, e.g.,
ensuring a high gain or low crosspolar levels at specific areas
in the coverage.

The performance of the antenna system can be simulated
by a range of methods, but for reflector antenna systems
the Physical Optics (PO) method, possibly augmented with
the Physical Theory of Diffraction (PTD), is the typical
choice. With PO/PTD, it is possible to optimize the antenna
design by evaluating the gain, the cross-polar performance,
and other relevant quantities across the coverage region as
the optimization variables are modified, and then letting the
optimization algorithm perform the search for the best possible
value of the goal function.

A common way to define the goal function is to consider the
worst-case performance of the antenna system, i.e. the largest
deviation from the specified goals. This leads to a so-called
minimax problem, which seeks to produce the system with
the best worst-case performance; see e.g. [1]. It is a nonlinear
optimization problem which means that it is generally too
computationally expensive to solve it to global optimality.
Thus, in practice, local optimization is used to find a local
minimum. This approach often depends on the antenna de-
signer providing a suitable initial design as a starting point for
the local optimization, a task that can be notoriously difficult
even for experienced designers. Unfortunately, the quality of
the design obtained via the minimax approach is sensitive to
the initialization.

To address the sensitivity of the minimax approach to
the starting point, we consider a different measure of the
performance of a particular design. The result is a one-
sided nonlinear least-squares (OLS) problem in which the cost
function takes all points where the goal is not met into account
instead of only the worst point. The resulting problem has
some interesting properties that makes it less susceptible to
local minima, as has been discussed previously in the literature
[2]. In this paper, we will focus on the use of the OLS problem
as a means to find an initial design for the minimax approach.

II. PROBLEM FORMULATION

We start by defining m functions f1(x), . . . , fm(x) where
fi(x) : Rn → R represents the performance of the antenna
system (simulated e.g. by PO/PTD) associated with the ith
position in the coverage region as a function of a vector x of n
design variables. For each of the m positions, we have a given
performance goal gi, and we include weights wi that may be
used to emphasize important goals or indicate minimization
or maximization. These quantities are then combined to yield
a residual function

ri(x) = wi(gi − fi(x)) (1)

for each of the m positions. The elements of x may represent
the parameters in a shaped surface, the position or excitation
of feeds and arrays, etc.

With the definition of the residual functions given in (1),
the minimax antenna design problem can be expressed as

minimize
x∈Rn

maxi ri(x)

subject to Cx+ d ≥ 0.

This objective function is convex, but it is not everywhere
differentiable, and its piecewise behaviour caused by chang-
ing residual functions governing the objective function lead
to an often complicated behaviour, particularly far from an
optimum. As an alternative to the max objective, we proposed
in [2] a one-sided least-squares (OLS) objective of the form

minimize
x∈Rn

∑m
i=1 max {0, ri}2

subject to Cx+ d ≥ 0.

Unlike the max objective function, the OLS objective func-
tion is continuously differentiable, and since it includes all
non-fulfilled residual functions and is locally quadratic, the
behaviour of the objective function is less challenging than
for the minimax formulation.



A. Numerical implementation

We now provide a brief overview of an algorithm for local
minimization of the OLS problem, described in detail in [2].

By introducing auxiliary variables, we apply the epigraph
formulation to arrive at the equivalent problem

minimize
x∈Rn,u∈Rm

‖u‖22

subject to Cx+ d ≥ 0

ui ≥ ri(x), i = 1, . . . ,m

ui ≥ 0, i = 1, . . . ,m.

(2)

The problem has a convex quadratic objective function, but
the inequality constraints ui ≥ ri(x) may be non-convex.

To minimize (2) locally, we propose to use a trust-region
method. This requires a model of the problem that serves as a
surrogate within a trust-region. At the kth iteration, we obtain
a convex model by linearizing the residual functions ri(x)
around xk, resulting in the trust-region problem

minimize
∆x∈Rn,u∈Rm

‖u‖22

subject to C∆x+ dk ≥ 0

u ≥ rk + Jk∆x

u ≥ 0

δk ≥ ‖∆x‖∞ ,

(3)

where δk > 0 is the trust-region radius, and

dk = Cxk + d, rk = r(xk), (4)

Jk =
[
∇r1(xk) . . . ∇rm(xk)

]T
. (5)

We use an interior-point method [3] to yield a step ∆x.

III. RESULTS

To illustrate the effect of the initialization strategy, we
consider a case where the objective is to shape a geostationary
reflector system for maximum gain over a CONUS coverage
(continental United States). The surface of the reflector is
parametrised using n = 783 spline variables using the TICRA
software POS, and the coverage is discretized at m = 810
points.

The initial guesses, used as a starting point for the opti-
mization, were created by de-focusing a paraboloidal reflector
such that the radiated main beam covers the coverage region.
However, moving from guess 1 to guess 6 in Table I, the de-
focusing was performed on a progressively shifted coverage,
such that guess 1 is expected to produce the best results and
initial guess 6 is expected to produce the worst results. This
is intended to highlight the performance in scenarios where
strong starting guesses cannot be obtained. We did not impose
constraints on x. An example of the coverage obtained with
the minimax algorithm initialized with initial guess 2 is shown
in Fig. 1.

In our experiments, we limited the number of function
evaluations (kmax) to 500, and for each of the six initial
guesses we did two experiments. In the first experiment,

Fig. 1. Contours of coverage optimized using the minimax algorithm. The
peak gain of around 33 dB is at the cross in Florida. The Nadir direction of
the satellite is shown in the black circle.

TABLE I. VALUE OF MAXIMAL RESIDUAL IN DB AFTER 500 ITERATIONS.
THE 6 INITIAL GUESSES BECOME PROGRESSIVELY WORSE: 1 IS A GOOD

(GREEN) INITIAL GUESS AND 6 IS A POOR (RED) INITIAL GUESS.

Initial Guess 1 2 3 4 5 6
Minimax only -0.074 0.090 0.826 2.019 4.149 9.360
OLS+minimax -0.074 -0.004 0.417 1.952 4.103 7.690
Difference 0.000 0.094 0.409 0.067 0.046 1.67

we applied the OLS algorithm for 250 iterations (or until a
stopping criteria is met), followed by the minimax algorithm
for the remaining iterations. In the second experiment, we used
only the minimax algorithm for 500 iterations. Our results
are summarized in Table I; recall that smaller residuals are
better. The results clearly show that the initialization strategy
can improve the minimum gain in the coverage: the gain is
improved for initial guesses 2-6, and the result remains the
same for initial guess 1. Considering the maximal residual —
it measures how far we are from reaching the goal value — the
absolute improvement is largest for initial guess 6 (1.67 dB),
where there is much room for improvement, and the relative
improvement is largest for initial guess 3 (49.5%).

IV. CONCLUSION

The use of one-sided least-squares for initializing the mini-
max algorithm can lead to improved results: in our numerical
experiments, the initialization strategy led to an improved
design with five out of six initial guesses.
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