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Abstract—Large reflector antennas for telecommunication or
space observation purposes often require a lengthy and detailed
design process, where the design is carefully revised to ensure the
best performance for the intended application. For many modern
reflector antennas, quantification of the uncertainty in perfor-
mance as a function of manufacturing errors is an important
part of the design process. In this paper, we present an efficient
way of quantifying the effects of uncertainty in the production.
The method is shown to far outperform the conventional Monte-
Carlo techniques in accuracy and computational time.

Index Terms—uncertainty quantification, reflector antennas.

I. INTRODUCTION

Designing reflector antenna systems for modern telecom-
munication applications entails very stringent performance
requirements and strict error budgets. As the systems become
increasingly complex and involve many subsystems, the need
for accurate and reliable quantification of the errors involved
in the error budgets becomes greater and greater.

Modern computational electromagnetics software makes it
possible for the engineers behind such systems to simulate a
large number of design choices, in some cases even allowing
fully automatic optimization to attain optimal performance.
However, when it comes to quantifying the uncertainty, i.e.,
the dependency of the performance on the mechanical errors
in the system when it is produced, the engineers are on their
own. In practice, many engineers will simply build the system,
measure it, and compare the results and try to explain the
discrepancies — this approach means that the engineer does
not have full control of the final performance.

If the engineers apply some form of uncertainty analysis,
most will resort to simply running a very large number of
simulations with random errors added sporadically to the
system, and then perform some statistical examination on that
data. The downsides to this approach are clear: A very large
number of simulations is required, and the risk of user error
is high.

This paper presents an alternative approach. The user is
required to specify how the errors manifest themselves in
the system, e.g. surface errors in the reflectors, inaccurate
mounting or phase errors in the feed, and so on. Based on this
input, the algorithm automatically determines the uncertainty
of the output parameter of interest.

The paper is divided as follows. After a discussion of
mathematical Uncertainty Quantification (UQ) in Section II,
including a discussion of how these algorithms greatly out-
perform traditional methods based on Monte-Carlo sampling,

we discuss how to implement a specific algorithm efficiently
in Section II-A. After this discussion, we present a number of
test cases in Section III that illustrate how the method is able
to quantify the performance uncertainty caused by geometrical
errors in the design.

II. MATHEMATICAL UNCERTAINTY QUANTIFICATION

Uncertainty Quanfication (UQ) has been a subject of study
in the applied mathematics community for several decades,
and has in the recent years seen a significant increase in
interest, particularly due to progress made in areas such as
stochastic collocation.

The fundamental question that UQ attempts to answer is:

Given a function F (X), where X is a vector of
D stochastic elements, characterize the behaviour of
F (X).

How to characterize the behavour, however, is not straight-
forward. The traditional approach is the so-called Monte-Carlo
method, which simply samples the function F a large number
of times by picking X according to the distribution of its
elements. Aside from being very simple to implement, the
Monte-Carlo method has the advantage that its convergence
rate is 1√

M
, where M is the number of evaluations of F , and

thus the convergence speed is independent of the number of
parameters D in the X vector.

The drawback, however, of Monte-Carlo is that in practice,
1√
M

can be too slow for many applications, in particular
scenarios where high accuracy is needed and/or where the
number of parameters D is not too large. In these cases,
higher-order methods such as stochastic collocation offer a far
better convergence rate for a moderate number of parameters
D, while only being slightly more complicated to implement.

Stochastic collocation is done by approximating the mo-
ments of the function F by numerical integration:

Expected value : E(F (X)) = µF (1)

=

∫ b(1)

a(1)

∫ b(2)

a(2)
. . .

∫ b(D)

a(D)

gX(X)F (X)dX,

Variance : Var(F (X)) = σ2
F (2)

=

∫ b(1)

a(1)

∫ b(2)

a(2)
. . .

∫ b(D)

a(D)

gX(X)F 2(X)dX − µ2
F .
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Fig. 1. The approximation to the true F (X) achieved by applying Monte-
Carlo and our higher-order UQ collocation, with each method evaluating
F (X) at 7 points. Clearly, the higher-order method achieves a much better
approximation and subsequently a more accurate integral when applied to (1)
and (2).

In this notation, gX(i) is the distribution function for the i’th
element in X , and a(i) and b(i) are the limits of this distri-
bution function. The most common distributions are shown
below:

Distribution gX(x) [a, b]

Normal 1√
2π
e

−x2

2 [−∞,∞]

Uniform 1
2 [−1, 1]

Exponential e−x [0,∞]

With these moments of the function, a range of statistical
estimates can be obtained:
• Mean performance: What is the expected (mean) per-

formance of the system?
• Variation in performance: What is the variation in the

performance of the system?
• Deviation from nominal: How does the expected per-

formance deviate from the nominal performance?
• Confidence intervals: With α-percent certainty, how will

the system perform?
These estimates are often required when designing antennas
for industrial applications.

The difference in practice between the convergence rate of
the two classes of methods, Monte-Carlo (MC) and higher-
order methods is extreme for a small number of unknowns.
An illustration of the difference is shown in Figure 1, where
the true function F is shown in black, and in red and green is
shown the approximation by the MC and higher-order method,
respectively, based on 7 evaluations of F . Clearly, the accuracy
of the higher-order method is much better than MC.

A. Numerical implementation

As shown in Figure 1, the improvement in performance is
caused by performing the integration using higher-order inte-

gration methods, approximating the integrand by a polynomial
basis. In this paper we will apply collocation methods, which
simply sample the function F (X) in the way that is most
appropriate for the distribution function for the elements in
X , and perform the integrals (1)-(2) by numerical quadrature.
We will give a brief, non-mathematical sketch of the approach
below, but refer readers to [1], [2].

Computing the D-dimensional integrals (1) and (2) in an
efficient manner is a key factor in achieving satisfactory
performance. It is important to stress that while an efficient
implementation of any UQ algorithm requires careful con-
sideration of many numerical details, the dominant factor in
performance for our application is implementation of efficient
multi-dimensional integration rules. This is particularly true
as D increases and as F (X) begins to have a more complex
behaviour.

For moderate values of D, say, D . 100, naive UQ
implementations will apply tensor grids, constituting a tensor
product of a set of one-dimensional rules. Tensor grids require
an unacceptable amount of function evaluations for large D,
since the number of integration points scale as ND, where N
is the number of integration points for the one-dimensional
rule.

Efficient multi-dimensional integration grids can instead
be obtained through the use of sparse grids, which employ
Smolyak’s l’th order tensor combination of one-dimensional
rules [1, Section 3.2.2]. The computational complexity of
algorithms based on sparse grids is discussed in detail in [3],
but suffice it to say that the number of integration points scales
as 2l N

D

D! . Since 2l � D! for all but trivial problem sizes,
sparse grids provide a significant reduction in the number of
function evaluations compared to tensor grids.

For D & 100, even sparse grids can begin to require too
many evaluations. In particular, if F (X) behaves reasonably
simple in the domain of interest (for instance because the
quality of production is high enough for the intended appli-
cation), the high accuracy of grid-based methods might not
be necessary. Instead, simpler rules can be applied as a first
attempt. In this implementation, we apply the Stroud rules
[4] of second and third kind, which require D + 1 and 2D
evaluations, respectively, and consider whether the integral has
converged based on these two evaluations. If the integral has
not converged, we then apply sparse grids.

III. RESULTS

In the following, we will consider several examples to
illustrate the applicability of uncertainty quantification. All
simulations have been performed on a laptop with an 2.6GHz
i7 processor and 16 GB RAM.

A. Comparison: Radiation from a circular aperture

We begin by looking at the radiation from a circular aperture
mounted on an infinite ground plane, letting the radius of the
aperture be a stochastic variable with uniform distribution.
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Fig. 2. Comparison between the number of function evaluations required
for a specific accuracy in the estimate of the mean by the UQ algorithm
and a traditional Monte-Carlo implementation. The case is discussed in
Section III-A.

Based on [5, (6-131)], the θ-polarized electric far field from a
circular aperture of radius X is

E(X; r, θ, φ) = j
kX2E0e

−jkr

r

(
sinφ

J1(kX sin θ)

kX sin θ

)
. (3)

To simplify things further, we choose k = 2π and set

F (X; θ = 15◦) = 10 log10

∣∣∣∣rE(X; r, θ, 90◦)
E0

∣∣∣∣2 . (4)

Thus, we let the radius be a stochastic variable X ∈
U(2.5 m, 3.5 m) and consider the quantity rE

E0
, which is r-

independent, in dB in the E-plane at θ = 15◦.
This example is quite simple, with an analytical F (X). We

will use this example to illustrate the difference in convergence
between a stochastic collocation method for UQ, such as that
described in Section II-A, with a simple Monte-Carlo (MC)
implementation.

To perform the comparison, a reference result for the mean
µref is produced by evaluating the function F (X) an extreme
amount of times. Based on these reference values, the compar-
ison shown in Figure 2 shows the absolute deviation between
the reference result and the computed means µcalc produced by
the UQ algorithm and a simple MC implementation. Noting
the log-log scale, we see that there is simply no reason to
apply MC in a scenario such as those discussed in the present
paper, where the number of variables is fairly low.

B. Horn Design

As a second example, we consider the design of an axially
corrugated horn designed to illuminate a D = 1m reflector
in an offset configuration. The operating frequency is f =
12GHz, and the focal length is F = 0.6m. The geometry of
the horn itself is shown in Figure 3, while the antenna system
is shown in Figure 4.

Fig. 3. The corrugated horn used in Section III-B. The horn has 9 corruga-
tions.

TABLE I
KEY PERFORMANCE METRICS OF THE SYSTEM IN FIGURE 4.

Quantity Mean Std. Dev 95% conf
Return loss 24.20 0.36 [23.48, 24.91]
Peak Directivity 40.06 0.02 [40.02, 40.09]
Cx-polar level 19.61 0.04 [19.52, 19.69]

The horn is rotationally symmetric and has 9 corrugations.
It has been analyzed using an efficient Higher-Order Body of
Revolution Method of Moments (HO-BoR-MoM) and opti-
mized with a two-term objective function, meaning the horn
provides a compromise between low return loss of the horn
and high directivity of the reflector system. The reflector is
analyzed using Physical Optics (PO) augmented with Physical
Theory of Diffraction (PTD).

Based on the optimized design, we then add manufacturing
and mounting deviations as follows:
• Ridge Widths, uniformly distributed ±0.1 mm, 9 vari-

ables,
• Slot Widths, uniformly distributed ±0.1 mm, 9 variables,
• Angular mounting angles, uniformly distributed ±0.1◦, 2

variables,
• Horizontal mounting in the focal plane, uniformly dis-

tributed ±0.5 mm, 2 variables,
for a total of D = 22 variables.

The UQ algorithm requires 66 evaluations of F (X) to
produce the mean and standard deviation with sufficient ac-
curacy, with a total computation time of 5 minutes on a
laptop. This means that the analysis time for each evaluation of
the complete reflector system is 4.5 seconds. The mean and
confidence interval for the radiated pattern from the system
is shown in Figure 5, while some of the key quantities of
performance of the full system are shown in Table I.

Interestingly, while Table I shows that the return loss of
the system is affected by the variation in the parameters, the
patterns in Figure 5 demonstrate that the confidence interval
of the radiated pattern is fairly narrow. This illustrates the
importance of considering uncertainty in the entire system,



Fig. 4. An offset antenna system used in Section III-B, with the horn from
Figure 3 used to illuminate the reflector.
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Fig. 5. The co-polar and cx-polar patterns from the antenna system in Figure 4
for φ = 45◦, with confidence intervals.

not just in the subcomponents individually, when performing
uncertainty quantification. Thus, even though the variation
in performance for the horn itself might be significant, this
variation might be insignificant when the horn is used to
illuminate a reflector.

C. Surface deviations for a simple reflector antenna design

We now move to consider an example of quantification of
uncertainty stemming from inaccurate surfaces.
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Fig. 6. Pattern radiated by the simple reflector system discussed in Sec-
tion III-C when subjected to uncertainty in the manufactured surface.

We consider a very simple system — a center-fed D =
0.5m parabolic reflector with F/D = 1.2 at f = 30GHz. The
simplicity of the design allows us to focus on the performance.

While the fundamental shape of the surface is a paraboloid,
we add deviations in a 30-by-30 grid of points placed
equidistantly on the surface, using interpolation between those
900 points. Each of the 900 points are then chosen to be
stochastic variables with a uniform variation between −50
and 50 micron, intended to mimic deviations from the nominal
paraboloidal reflector surface, caused by manufacturing errors.

The analysis is performed by PO/PTD, and requires 2700
evaluations of the F (X) function. The total runtime is 6
minutes on a laptop, meaning that each evaluation runs in
about 0.13 seconds. The resulting mean radiated pattern, along
with a 95% confidence interval, is shown in Figure 6. We note
that while the main beam is almost unaffected, the sidelobes
shown a significant variation, with the confidence interval at
the peak of the first sidelobe being about ±1 dB. Thus, if the
sidelobe levels are important for the application, perhaps ±50
micron is an unacceptable deviation for this design.

D. Multi-beam

As a final example, we will consider a scenario based on a
High-Throughput-Satellite (HTS) reflector antenna configura-
tion, where the individual feeds in a feed cluster each use
the reflector to produce seperate beams, i.e., a multi-beam
single-feed per beam setup. The system configuration is a
standard four reflector setup, where four reflectors are needed
to produce the required number of beams. Each reflector uses
multiple offset feeds to produce a number of beams with the
same polarization and frequency. The beams of the system are
shown in Figure 7.

Each reflector uses a single offset reflector with D = 3.66m
at F = 30GHz. The beam-width is 0.25◦. In such systems, it
is important that the sidelobes of one beam in the nearest
neighbouring coverage cell with the same frequency and
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Fig. 7. The beams from a High-Throughput Satellite as discussed in
Section III-D. Beams with the same color have the same polarization and
frequency and are generated by offset feeds using the same reflector.

polarisation are not too high, to avoid compromising the C/I
(Carrier to interference) ratio. In our system, this means that
the most interesting cell to look at begins 0.375◦ away from
the peak.

Therefore, in Figure 8, we have performed two separate
uncertainty quantifications, examining the beams from two
coverage cells with the same color. The critical factor for these
two beams is thus the co-polar level of the sidelobes interfering
with the other beam.

Similar to the previous case, we add deviations to a
paraboloidal surface in a 20-by-20 grid on the surface using
interpolation between those 400 points. We let those surface
deviations vary uniformly between −100 and 100 micron,
assuming that the significantly larger reflector will be less
accurate than the previous case. The simulation requires 1201
evaluations of the system, and completes in roughly 25 min-
utes.

The results from Figure 8 are clear. While the performance
of the system with the nominal surface might be acceptable,
the surface variation significantly affects the sidelobe levels.
In turn, the performance of the system as measured by C/I
could very well be significantly poorer than indicated by the
nominal simulation, when the surface is actually produced.

IV. CONCLUSION

This paper has highlighted the capabilities of uncertainty
quantification in the practical setting of reflector antenna
design, namely, to achieve a much more realistic estimate
of the performance of the system when it has been manu-
factured, rather than considering a canonical and simplified
geometry that is unaffected by production errors. The results
clearly demonstrate that a higher-order uncertainty quantifica-
tion algorithm is able to achieve considerably better accuracy
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Fig. 8. Pattern from two feeds with the same frequency and polarization in
a standard four-color setup, as described in Section III-D. Thus, the sidelobe
level from one beam in the coverage (indicated by the yellow region) of the
other beam will affect the C/I of the system.

than Monte-Carlo methods in far fewer function evaluations,
allowing a more realistic answer to be achieved in a shorter
timeframe. The take-away conclusion is thus obvious: Modern
antenna designers should ensure that their computational tools
allow them to quantify the uncertainty of their designs using
efficient and accurate algorithms. This will allow antenna en-
gineers to simulate what they can actually expect to measure,
instead of simulating an idealised performance that can rarely,
if ever, be realized in practice.
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