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Abstract—Reverberation chambers (RCs) are important mea-
surement facilities, and thus it is often required to simulate their
behaviour numerically. However, due to their special character-
istics, especially for high Q factors, they are often considered
too challenging for application of standard numerical software.
In particular, a recent publication [1] listed the perceived state-
of-the-art in integral equation modelling of RCs, and identified
numerous open problems.

The present paper illustrates that computational analysis of
large RCs can be performed with limited computer resources.
This can be achieved by using Higher-Order (HO) basis functions
in the integral equation discretization and, if necessary, further
applying the Multi-Level Fast Multipole Method.

After a discussion and brief review of existing methods for RC
modelling, we will turn to a description of the key features of
HO basis functions and their related MLFMM implementation,
focusing on how they allow surpassing some of the challenges
faced by lower-order discretizations. Then, several RC test
cases are analyzed, drawing comparisons to other results from
the relevant literature. The conclusion is that, using HO basis
functions and a thorough MLFMM implementation, some of the
challenges identified in [1] can be overcome.

I. INTRODUCTION

Reverberation chambers (RCs) have seen increasing popu-
larity over the last decade or two, and are quickly becoming a
standard tool when performing Electromagnetic Compatibility
tests. From the view of electromagnetics, an RC is a 3D
rectangular metallic cavity with one or several mode stirrers,
designed to yield a field distribution that follows the usage
environment of the device under test. This includes a wide
range of field strengths as well as varying polarization and
directional interference.

Designing an RC which enables high-accuracy, repeatable
tests that can validate a range of devices, is not trivial. The
positioning and shape of the stirrer, for instance, is a subject of
discussion. As the RC is designed to provide a cost-efficient
testing environment, simulation of the behaviour of the RC
allows its properties to be evaluated, and modified, before
going to the costly construction phase.

When modelling reverberation chambers, there are in gen-
eral three different approaches:

« Statistical methods, whereby statistics on the properties
of the fields inside the RC are gathered.
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« Full-wave, specialized algorithms. These include the Dis-
crete Singular Convolution Method of Moments (DSC-
MoM) and methods based on cavity Green’s functions.

o Full-wave, general purpose algorithms. These include
Finite-Difference Time Domain (FDTD), Finite Element
Method (FEM) and the Method of Moments (MoM).

In general, the difficulties in finding a suitable numerical
method [2] are due to the resonant characteristics of the
chamber. Very fine discretizations are needed for accurate
solutions, leading to convergence issues for iterative methods.

The statistical methods, sometimes combined with full-wave
methods, are very useful but give only indirect information
about the behaviour inside the RC.

The specialized algorithms try to avoid discretizing the
chamber itself. This can be done through a layered approach
[3], wherein the chamber is modelled by applying Maxwells
equations in differential form, using a 3D grid to discretize the
interior of the chamber, and coupled to a MoM discretization
of the stirrers and other objects inside the chamber. The
drawback of this approach is a rather large use of memory,
which [4] overcame at the expense of a significantly increased
computational time. Note that while the chamber walls are
not discretized, the interior of the chamber is, meaning that
increasing the size will still lead to significantly increased
computational resources.

Another specialized algorithm uses the cavity Green’s func-
tions. Here, neither the walls nor the chamber interior is
discretized, which results in extreme memory reductions in the
number of unknowns. [5]-[7] was limited to small wires inside
the chamber due to the large overhead of evaluating the cavity
Green’s function. [8] significantly reduced the computational
burden by employing a spectral domain factorization. Regard-
less, these methods cannot take into account imperfections in
the chamber such as doors, slanted walls or similar effects. [2]
notes that the RC door has significant impact on the solution
and must be taken into account.

The general purpose algorithms can take into account a
wide variety of effects, including non-rectangular chambers,
arbitrarily shaped stirrers and other imperfections. However,
they can have problems due to the resonant characteristics of
the chamber, particularly for high Q-values. FDTD [9], [10]
and the Transmission Line Matrix method (TLM) discretize



the entire interior of the chamber, yielding a very large
resource consumption, particularly if accurate solutions are
desired.

Finally, the Method of Moments (MoM) can discretize
arbitrarily shaped chamber walls and the structures inside and
is thus, in a sense, a compromise between the differential
solvers and the specialised functions. Its memory requirement
can still be fairly high for complex and electrically large
scatterers, even when accelerated through the Multi-Level Fast
Multipole Method (MLFMM).

The conclusion thus far in the literature seems to be
that even for small problems, the specialized cavity Green’s
function approaches are the best choice, allowing for fast
computations and accurate solutions. In particular, when com-
paring with MLFMM, cavity Green’s functions are deemed to
be faster and more accurate due to slow convergence of the
iterative solver with MLFMM.

In the present paper, we argue that while cavity Green’s
function approaches have several advantages, MoM and
MLFMM are useful for far larger problems than have pre-
viously been analyzed. In particular, applying Higher-Order
basis functions and a suitable MLFMM implementation, large
problems can be solved both rapidly and accurately, while
allowing users to analyze arbitrary configurations.

II. INTEGRAL EQUATIONS

Integral equation techniques attempt to find the surface
current density induced by an incident field. Since they are
based on an exact formulation, the only error sources are from
the discretization and numerical solution.

Denoting the surface S, the Electric Field Integral Equation
(EFIE) can be expressed as

LJs =n x E, )]

where 7 is a unit vector normal to S, E? is the incident electric
field, and Js is the surface current density. £ is the integral
operator
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where 1 is the free-space permeability and k& = 27/, X being
the free-space wavelength. G(r,r’) is the free-space Green’s

function G(r,r’) = % and r, ' denote observation
and integration points, respectively.
The Magnetic Field Integral Equation (MFIE) [11] for a

smooth, closed scatterer takes the form
1 )
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in which H' is the incident magnetic field, Z is the identity
operator, and K is the operator

KJs=n x][ Js(r') x VG(r,v")d*r’, (4)
S

where { denotes the Cauchy principal value and 7 is an
outward normal unit vector. Combining EFIE and MFIE
results in the Combined Field Integral Equation (CFIE) [11]

[aﬁ +(1—-a)n (;I—&— K)} Js = anxE'+(1—a)npax H'.
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Here, n = \//T/e is the free-space impedance, € is the free-
space permittivity and « € [0, 1] is a weighting factor, usually
= 0.5. The CFIE has the advantage of not having any
homogenous solutions. While the MFIE and thus the CFIE is
only valid for closed surfaces, it can be trivially combined with
the EFIE to discretize open and closed surfaces simultaneously
[12].
When discretizing the integral equation through the use of
a Galerkin formulation, a linear system of the form Z1 =
V is achieved, where Z is an N x N matrix. The memory
requirement to store Z is O(N?) and the solution time for a
direct method is O(N?3). Therefore, it is important to reduce
N as much as possible, whilst maintaining accuracy. This is
most efficiently done using Higher-Order basis function on
curved quadrilateral patches — we employ the Legendre basis
functions [13].

A. Acceleration of MoM

To accelerate the solution of integral equations, methods
such as the Multi-Level Fast Multipole Method (MLFMM)
[14]-[16] can be used. These require much less memory
through a compact representation of the operator, which
prohibits the use of direct methods, instead relying on an
iterative solver and a preconditioner to ensure convergence
of the solver.

The essential part of MLFMM is Rokhlin’s translation
function [14]

L
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Consider two basis functions f; and f;, located in groups m
and m/, respectively, that are well-separated such that |r,,/|
is larger than some threshold. Given 77, the mutual impedance
between f; and f; can be expressed as

Jl—“#RJm

where r,, is defined as r,, = r, — 'ry and r,, is the
center of the group m. For EFIE, kK = —j k", while for
MFIE £ = —4L. The accuracy of (7), when using the Excess
Bandwidth Function [17] to find the truncation limit L, is
directly proportional to the distance between groups m and
m’ and their size.

The basis function patterns Vj,,, and R, for EFIE are
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and for MFIE
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where r covers the patch on which f; is defined.

In [1], [18], the MLFMM is used to study reverberation
chambers. In addition to the conclusion that the CFIE, not the
EFIE, should be used for RC simulation, they conclude that
MLFMM can yield very large errors when applied to RCs.
These conclusions are challenged here.

B. Choice of Integral Equation

When solving the exterior scattering problem, i.e. the sce-
nario where a cavity with perfectly electrically conducting
walls is illuminated by an outside field, both the EFIE and
the MFIE suffer from the presence of homogeneous solutions
inside the closed cavity, whereas the CFIE provides a unique
solution at all frequencies. In particular, the homogenous
solutions for the MFIE inside the cavity actually radiate a
field outside it, which makes the MFIE a very poor choice for
such problems.

When solving the interior cavity problem, where the source
is placed inside the cavity — as is the case for the RC problems
considered in the present paper —all three integral equations
can be used since no homogenous solution can exist in the
exterior region extending to infinity. Thus, the only difference
between the three formulations is the condition number of the
resulting matrix. Since MFIE results in the lowest condition
number, the MFIE is the best formulation for solving the inte-
rior cavity problem. We note that for such interior problems,
the normal vector in (4) and (5) is directed into the cavity.

C. MLFMM and Reverberation Chambers

When applying the MLFMM, the expansion of the Greens
function around a center (r,, in (8)) is translated by the trans-
lation function T7,. The accuracy of the expansion depends on
the diameter of the groups and the distance |r,, — 7., | between
the groups. Assuming that the diameter of the groups is D such
that the side length of the groups is @ = D/+/3, the minimum
distance for which (7) is applied is |, — 7| = 2a. At this
short distance, the error in the expansion can be significantly
larger than the theoretical estimates predict [19], particularly
for small groups. Figure 1 illustrates the scenario.

Usually, this is not in itself a significant problem, because it
might not affect the radiated field much. However, for cavities
such as a reverberation chamber, the effects of the resonant
nature of the chamber are so severe that the aforementioned
errors are very apparent in the solution [1]. The only viable
way to avoid this is to increase the size of the groups, but this
results in a significant increase in memory.

However, for MLFMM based on Higher-Order (HO) basis
functions, the groups are already significantly larger than
for RWG based solutions, and therefore MLFMM based on
HO (HO MLFMM) basis functions allows for much better
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Fig. 1: The relative error between FMM and MoM as a func-
tion of group size for two groups separated by the minimum
distance at which the FMM is applicable, 2a.
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Fig. 2: The geometry for test case A. The white stirrer is
positioned at the top of the chamber, and the dashed plane,
which extends slightly beyond the chamber walls, indicates
the plane on which we compute the field.

error control than MLFMM based on Lower-Order (LO) basis
functions. Further, HO MLFMM was shown in [20] to be
more efficient than LO MLFMM, even when the groups are as
small as possible. Thus, when LO MLFMM is applied to RC
problems, requiring oversized groups, HO MLFMM is even
more advantageous relative to LO MLFMM.

III. NUMERICAL RESULTS

In this section, we will consider some test cases, drawing
comparisons to results available in the literature. Comparing
the memory is straight-forward, and since the results from the
literature are fairly recent, we can to some extent also compare
the computational time spent.



A. Simple Chamber with Stirrer

We will begin by considering a geometry studied in [1],
[3], [4], a fairly large reverberation chamber with a single, flat
plate as a stirrer. The configuration is illustrated in Figure 2,
and the relevant parameters are given in Table I. As a source,
we use a y-directed point source at (p,,py,p.). We evaluate
the field on a plane at z = 4 m, extending beyond the chamber
walls, allowing us to inspect whether the field is actually zero
(as it should be) outside the chamber.

TABLE I: Configuration parameters, test cases A and B.

[ Symbol ] Parameter [ Case A | CaseB ]
Lo Chamber size along & 8.5m 8m
Ly Chamber size along y 12.5m 4.5m
L, Chamber size along z 6m 2.8m
Sz,Sy Stirrer dimensions 0.8m,8m 3.6m,1.2m
Das Dy, Pz Position of source (2,2,1.6)m | (2,2,1.6)m

The computational requirements are shown in Table II and
compared to similar results from previous publications. Our
runtimes are from a modern laptop, 2.6 GHz Intel i7, while
the other publications used an unspecified 2.67 GHz CPU,
meaning that we can roughly compare the computational
runtimes. For the lower frequency f = 82 MHz, the problem
is so small that an iterative solver is not necessary when
using Higher-Order basis functions —using patches with 2\
sidelength with up to 9" order basis functions, we - use 386
unknowns, meaning that a direct factorization of the 7 matrix
is by far the fastest solution. We use 2.4 seconds and 6 MB
of memory, which is 1-2 orders of magnitude less than that
reported in [1], [3], [4] for MoM and MLFMM as well as a
specialized, hybrid approach (DSC).

Increasing the frequency to f = 200 MHz means that the
number of unknowns is increased by roughly a factor of
6. For the RWG basis functions used by [1], [3], [4], this
results in a high number of unknowns. In turn, this means
that their direct MoM solution requires 30 GB memory and
thus is not an appealing alternative for standard workstations.
Turning to MLFMM, the use of RWG basis functions and
thus small groups results in high error levels, as discussed in
Section II-C, and long runtimes, while their use of CFIE results
in slower convergence. In contrast, for HO basis functions,
only 5162 unknowns are necessary, resulting in 0.2 GB of
memory, meaning that a direct solution is well within the
capabilities of most computers. Further, if an iterative solution
using MLFMM is desired, the use of HO basis functions and
the MFIE results in a short solution time and low relative error.

As a further confirmation of the applicability of MFIE for
this problem, Figure 3 compares the error achieved by MFIE
and EFIE relative to the solution achieved with CFIE. The
Figure clearly illustrates that the error patterns are similar,
suggesting that MFIE is at least as accurate as EFIE, but
converges much faster.

B. Larger Chamber

As a second test case, we consider another chamber, taken
from [8]. The general layout of the chamber is similar to
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Fig. 3: The error, relative to the solution achieved by CFIE,
when applying EFIE and MFIE, respectively. The very rapidly
varying error occurs at the walls of the RC.

testcase A, although the room is electrically slightly larger.
The exact dimensions are as given in Table I, where we note
that we use a dipole as a source, located in the same position
as test case A.

We again apply the MFIE and our Higher-Order MoM code
to solve the problem, and achieve the computational times
given in Table III.

We compare our computational loads with that of the cavity
Green’s function (CGF) code from [8], which also posted re-
sults from a reference MLFMM implementation based on low
order basis functions. We consider the room at three seperate
frequencies, and note that while our Higher-Order MoM code
uses much fewer unknowns than their low order MLFMM,
it still uses more unknowns than their CGF implementation.
However, the runtimes using CGF are an order of magnitude
higher than for our Higher-Order implementation.

While the number of unknowns is larger using Higher-Order
MoM, since MoM discretizes the entire structure while the
CGF only needs to discretize the stirrer, the problems consid-
ered here are far from memory limited on a modern computer
and allow the use of a direct solver. Therefore, the primary per-
formance parameter is expected to be the time consumption.



TABLE II: Computational results from test case A. The error
is relative to that achieved by the direct MoM solution. Greyed
out boxes indicate non-applicable information, while blacked
out boxes indicate unavailable information. Total time includes
both setup time and solver time.

Results from [1], [3], [4] Our code ’
=82 MHz, MoM [ MLEMM [ DSC MoM | MLEMM | |
No. unknowns 11239 3915 886
No. iterations ~ 250 Direct
Relative error 0.068-0.017
Time pr it. [s] 3.85 1.34-1.26
Total time [s] =~ 960 ~ 325 183-887 2.4 ~ L,
Memory [MB] 973 47-126 31-675 6 I Py
[ =200 MHz || MoM | MLFMM | DSC || MoM | MLFMM | ~
No. unknowns 63,480 5162
No. iterations ~ 2000 Direct 347
Relative error >1072 2-1077 1o}
Time pr it. [s] 0.17
Total time [s] 13.1 89 Fig. 4: Reverberation chamber with a door, for test case C.
Memory [GB] 0.2 0.15

TABLE III: Results from test case B.

Results from [8] Our code

=100 MHz Cavity [ MLFMM MoM [ MLFMM
Unknowns 147 4935 512
Total time [s] 3.4 45 0.28

f=200 MHz || Cavity | MLFMM || MoM | MLEMM |

Unknowns 569 19847 1668
1.9 g

Total time [s] 21.5 1110
=400 MHz H Cavity [ MLFMM H MoM [ MLFMM ]

2292 78306 5760
517.3 11774 185 ]

Unknowns
Total time [s]
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C. Chamber with Door

The previous examples highlighted the memory and speed
advantages of Higher-Order MoM, as well as the accuracy
advantage of HO-MLFMM, even when compared against
specialized RC codes.

However, an important consideration when modelling RCs
are that the chamber is, in fact, far from a perfect rectangular
cavity. Elements such as the door and the mounting of the
device-under-test are very important for the scattered field due
to the resonant nature of the chamber [2]. The specialized
codes considered previously are significantly less effective
when the mounting structures have to be included, and codes
based on cavity Green’s function cannot take the door or other
wall imperfections into account. Furthermore, some RCs are
designed with slanted, moveable walls, such that the walls
themselves can act as mode stirrers.

To demonstrate the general applicability of our approach,
and confirm previous findings in the literature concerning the
effect of including the RC door, we slightly modify test case
A to include a door. The door is 2m high, 1 m wide and 0.1 m
deep, and is shown together with the rest of the chamber in
Figure 4. We calculate the behaviour at f = 200 MHz, where
we note that the door is roughly 0.07A deep, so electrically
speaking, the test case is not far from a perfect rectangular
chamber.

The z-component of the electric field is shown in Figure 5,
both with and without door. Clearly, the effects of the electri-
cally small door cannot be ignored, and thus methods based
on cavity Green’s function will have some issues when applied
to realistic chambers.

The number of unknowns needed for our simulation is
6170, slightly more than we used in test case A for the
perfect rectangular chamber, where we needed 5162. This is
not only due to the door, but also because we need a finer
mesh of the chamber walls when including the door, to ensure
connectivity of the mesh. While this yields a slightly larger
memory consumption, a direct solution is still feasible. Had we
used RWG basis functions, the problem would have required
roughly 25000 unknowns, in which case a direct solution
would require much more time due to the N2 scaling of the
solution time of a direct solver.

IV. CONCLUSION

We have considered several different reverberation cham-
bers, comparing our Higher-Order Method of Moments code
to results from the literature. In general, both with regards
to speed and memory, Higher-Order MoM is by far the
best approach of those considered. Methods based on cavity
Green’s function are less memory demanding but significantly
slower and only relevant for extremely large problems where
memory consumption is the limiting factor. Further, they
cannot be applied for realistic chambers that include doors
and other imperfections.

Also, we have shown that the MFIE is a better integral
equation than EFIE and CFIE for RC modelling, since the
lack of homogenous solutions allows us to exploit the well-
conditioning of the MFIE. Thus, the general purpose HO-
MoM and, if needed due to memory, HO MLFMM, applied to
the MFIE is the best method for analyzing realistic chambers.
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Fig. 5: The 2 component of the electric field, without and with
a small door. Also shown is the relative difference between the
two results.
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