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Abstract—Designing a contoured beam reflector or performing
a direct optimization of a reflectarray requires a mathematical
optimization procedure to determine the optimum design of
the antenna. A popular approach, used in the market-leading
TICRA software POS, can result in computation times on the
order of days, due to the optimization algorithm. The present
paper discusses recent improvements, allowing reductions in
optimization time by two orders of magnitude or more on several
application examples.

I. INTRODUCTION

The design of reflectors and reflectarrays for geostationary
contoured beam applications can require an optimization of the
reflector surface or reflectarray elements to achieve the desired
coverage. The mathematical algorithms in the optimization
process constitute, for electrically large scatterers, a major time
requirement in the design process, often being much more
costly than the electromagnetic computations.

The optimization problem to be solved can be expressed as

min
X

. F (X) = max
(
F1(X), F2(X), . . . , Fm(X)

)
, (1a)

s.t. AX ≤ B (1b)

where the F function represents the largest discrepancy over
the m residual functions Fi in the coverage. Fi is the dif-
ference between the attained value and the desired goal at
the i’th station in the coverage. X are the n variables of
interest, determining the shape of the reflector surface or the
parameters of each of the reflectarray elements. The constraints
(1b), where B contains p elements, can specify constraints
such that the solution is physically realizable, e.g., avoiding
rapid surface variations or ensuring that reflectarray elements
do not overlap.

II. ALGORITHM

The general framework of the algorithm is described in
detail in the paper by Hald [1], and is illustrated in Algorithm
1. The main computational bottleneck of Algorithm 1 is
the process involved in finding the direction ∆X and the
electromagnetic computation required to find T . For cases
where m, n and/or p is large, finding ∆X requires at least
an order of magnitude more computation time than finding T .

The main problem with the existing algorithm is that find-
ing ∆X requires maintaining a factorization of a constantly

Algorithm 1 Pseudocode for the min-max algorithm by Hald.

Initialize values at initial point X .
for k = 1,max iterations do

Find direction ∆X and step length α ≤ αmax
Evaluate T = F (X + α∆X)
Depending on T and F (X), update αmax and X .

expanding matrix, adding a single row and column for each
step. This is a slow but very accurate approach that it is in-
herently single-threaded, thus leaving no options for adapting
the algorithm for modern computer architectures. Finally, it
requires a large number of matrix-vector products, which can
be very time-consuming for large cases.

The new optimization approach avoids this by using an
interior-point solver to find ∆X using large steps along the
central path of the linearized problem. By taking large steps
that activate multiple functions and constraints each time, we
achieve a faster, easily parallelized implementation, which
can be made sufficiently accurate by adjusting the tolerances
of the interior-point solver. In practice, the difference in the
converged value of F between the new optimization approach
and that of Hald is typically less than 0.01 dB.

III. RESULTS

To illustrate the performance of the new algorithm, we
consider two applications, namely the design of a shaped
reflector and a reflectarray. All computations are performed
on a Dual Intel Xeon E5-2690 2.9 GHz computing node.

A. Shaped Reflector

We consider a large shaped offset-fed reflector with cover-
age of the Continental United States plus Hawaii. The reflector
has a circular rim with a diameter of 1 m and operates at
f = 60 GHz, implying that the electrical size is D = 200λ.
The surface of the reflector is defined as a paraboloid plus
a surface defined as a set of splines - the unknowns for
the problem are the spline coefficients. For this reflector, we
choose n = 5225 spline variables, and the coverage region is
covered with m = 6642 stations. We have no constraints, and
perform 500 iterations, ignoring the fact that the optimization
has not yet converged at the end of those 500 iterations.



TABLE I
RESULTS FROM THE OLD AND NEW ALGORITHM WHEN APPLIED TO THE

SHAPED REFLECTOR FROM SECTION III-A.
Optimization time Optimum F

Old algorithm 18:12 Hours -2.09
New algorithm 5:46 Minutes -2.11

Fig. 1. Coverage of the reflector used in Section III-A along with the
optimized pattern.

As shown in Table I, the reduction in time spent by the opti-
mization algorithm is a factor of 190, achieving effectively the
same result. Both algorithms evaluate the objective function F
once per iteration, and the time spent evaluating the objective
function 500 times is 5:51 minutes, such that the total time
spent solving the problem is 18:18 hours for the old algorithm
and 11:37 minutes for the new. The coverage as well as the
pattern from the optimized reflector is shown in Fig. 1.

B. Shaped Reflector with Constraints

Constraints are often imposed on the final design. Such
constraints can be on the variations in the surface curvature
of the reflector, due to limits imposed by the manufacturing
process, as well as on the size of the reflector in cases where
the installed size has to be within certain limits.

A common approach when working towards a realistic
antenna design is to perform the optimization without any
constraints, as was done in the previous example, and then use
that result as a starting guess for a new optimization procedure
with constraints. The rule of thumb is that the curvature
constraints should be sampled four times per spline. Further,
linearizing the surface constraints increases the number of
constraints by a factor of 8, yielding a constraint matrix with
roughly 128n rows, depending on the reflector rim.

For our specific case, imposing the constraint that the
local radius of curvature of the reflector has to be at least
0.1 m yields p = 639200 constraints. Interestingly, the huge
number of constraints means that just the task of finding a
feasible starting point, i.e. a starting point that satisfies all the
constraints, requires more than 48 hours for the old algorithm,
after which the algorithm wrongly determines that there is no
feasible starting point.

Finding a feasible point with the new algorithm requires
roughly a minute, and we then take 500 iterations requiring
about 20 minutes of computation time in the optimization
algorithm.

TABLE II
RESULTS FROM THE OLD AND NEW ALGORITHM WHEN APPLIED TO THE

REFLECTARRAY FROM SECTION III-C.
Optimization time Optimum F

Old algorithm 18:33 Hours -0.76
New algorithm 9:52 Minutes -0.76

C. Reflectarray

Another topic of intense research is the direct [2] optimiza-
tion of reflectarrays for contoured beam applications. In [3], a
parabolic reflectarray with rectangular elements was optimized
to fulfill the coverage requirements with a margin of 0.63 dB,
close to the performance of a shaped reflector which yields a
0.7 dB margin as reported in [4]. Interestingly, the optimization
performed in [3] took more than 12 hours, after which the old
algorithm appeared to have stalled at 0.63 dB.

Revisiting the problem, we apply both algorithms to the
problem. It turns out that the old algorithm was actually
progressing beyond −0.63, although very slowly, and attains
the same minimum as the new algorithm at −0.76, slightly
better than the optimized shaped reflector in [4]. The results
are detailed in Table II, demonstrating that the reduction in
optimization time is a factor of 113. The optimized reflectarray
is shown in Fig. 2.
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Fig. 2. The optimized reflectarray considered in Section III-C.
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