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Abstract—The monostatic radar cross section (RCS) is an
important design parameter for many applications but accurate
RCS prediction of an electrically large structure continues to be
a challenging task. High accuracy demands and a complicated
geometry often mean that asymptotic methods are not applicable,
while a full-wave method has traditionally required very large
computational resources. In the present paper, we avoid the
O(f6) computational time scaling of the Method of Moments
by applying the Multi-Level Fast Multipole Method (MLFMM).
A range of modifications to the traditional way of applying
MLFMM to monostatic RCS are implemented in order to achieve
strong computational performance even on modest hardware.

Index Terms—RCS, MLFMM, Integral Equations.

I. INTRODUCTION

In many modern engineering tasks, the computation of the
monostatic Radar Cross Section (RCS) is a critical part of the
design process. The need for high accuracy often necessitates
the use of full-wave methods to take into account effects that
asymptotic methods cannot include accurately. Unfortunately,
full-wave methods have traditionally been too computationally
demanding for use in monostatic RCS computation of large
structures. For full-wave methods based on an integral equa-
tion formulation, such as Method of Moments (MoM), the
computation time scales as O(f6), where f is the frequency.
For the current state-of-the-art RCS prediction tools, this poor
frequency scaling have resulted in algorithms [1], [2] that
either relax the accuracy requirements by using asymptotic
methods or, for implementations using full-wave methods,
require extreme runtimes even on very advanced and expensive
computing platforms [3], [4].

Acceleration algorithms such as the Multi-Level Fast Mul-
tipole Method (MLFMM) reduce the computational scaling of
MoM to O(C(f, P )f2 log f), where C(f, P ) is the number of
iterations required for convergence of an iterative solver, and
P is the number of incidence angles. Despite this significant
reduction in computing resources, most state-of-the-art full-
wave RCS solvers avoid the use of MLFMM and instead
prefer MoM for a number of reasons. First, many low-order
MLFMM codes are optimized for structures that are much
larger than those feasible for monostatic RCS computations.
Second, the number of iterations C(f, P ) can be very large
because the number of incidence angles can be very large, so a
direct solution is preferred. Third, most research for full-wave
RCS has focused on advanced computing platforms, such as

computing clusters, Graphics Processing Units (GPUs), or out-
of-core implementations on Solid State Disks (SSDs), most of
which are much harder to utilize for MLFMM than for MoM.

In this paper, we describe a range of developments towards
an efficient algorithm for large-scale full-wave monostatic
RCS, in particular for structures that are too large to handle
with MoM. The algorithm includes a discretization based
on higher-order basis functions and curved quadrilaterals,
an MLFMM implementation focused on keeping memory
requirements low, and a number of techniques that reduces the
total number of matrix-vector products needed for computing
the RCS for many incidence angles.

II. MONOSTATIC RADAR CROSS SECTION

The Radar Cross Section σ(θu, φu) of a structure in the
direction (θu, φu) is generally defined as [5, p. 64]

σ(θu, φu) = lim
r→∞

4πr2
|ES(θu, φu)|2

|EI(θi, φi)|2
, (1)

where EI(θi, φi) = E0e
−jkk̂·r is the incident electric field

due to a plane wave with constant amplitude vector E0 and
propagation vector k̂ = −(sin θi cosφix̂ + sin θi sinφiŷ +
cos θiẑ), k is the free-space wavenumber, and ES(θu, φu)
is the scattered far-field in direction θu, φu. Note from (1)
that the RCS can be considered a function defined on the
unit sphere. The far-field RCS in (1) is typically the object of
main practical interest, but it is possible to define and compute
near-field RCS as well which has little impact on the solution
process. Considering monostatic (θi = θu, φi = φu) rather
than bistatic RCS significantly complicates the problem, since
the current distribution on the target must be computed for
each incidence direction.

The definition (1) does not take into account the polariza-
tion of the incident and scattered fields. We can define the
ψ̂-polarized RCS for a ν̂-polarized incident field as follows:

σ(θu, φu)ψν = lim
r→∞

4πr2
|ES(θu, φu) · ψ̂|2

|EI
ν̂(θi, φi)|2

, (2)

where we define EI
ν̂(θi, φi) as the electric field due to a

ν-polarized plane-wave impinging from the direction (θi, φi).
Generally, one chooses the polarization vectors as the spherical
unit vectors, i.e. ψ̂, ν̂ = θ̂, φ̂.



III. INTEGRAL EQUATIONS

We consider the integral equation for time-harmonic elec-
tromagnetic waves and a perfectly electrically conducting
(PEC) scatterer S. The integral equation can be expressed
as a mixed potential Electric Field Integral Equation (EFIE).
On closed parts of S, the Combined Field Integral Equation
(CFIE) is used to avoid internal resonances. Through the
Galerkin approach, a matrix equation Z I = V is obtained. For
monostatic RCS with P incidence angles, the system contains
2P right-hand sides (RHSs) and can be written as

Z I = V , (3)

where Z has the size N ×N and I, V have the size N × 2P .
The solution to (3) will yield the required surface current

densities in I . The accuracy of I and the efficiency of the
solution of (3) depend on the discretization. This motivates
our choice of discretization scheme which is inherited from
GRASP’s MLFMM solver, where both the current JS and
the surface geometry S are discretized using a higher-order
approach [6]. With such a higher-order discretization, rather
than one based on lower-order functions such as RWG [7],
the number of unknowns N required for obtaining a specific
accuracy is significantly reduced, which is critical because
solving (3) requires O(C(f, P )N2) operations for an iterative
solution or O(N3 + PN2) for a direct solution.

A. Multi-Level Fast Multipole Method

To avoid the N2 and N3 terms in the asymptotic scaling, the
Multi-Level Fast Multipole Method (MLFMM) is a procedure
for performing the operation Z I in O(N logN) time and
memory. Combining this with an iterative solver such as GM-
RES allows us to solve (3) in O(C(f, P )N logN) operations.
While the standard MLFMM for RWG basis functions is well
studied, it is not straight-forward to adapt MLFMM to a
higher-order discretization. However, within the last couple
of years, an efficient HO MLFMM formulation has been
presented [8] and applied to a range of problems [9–11],
demonstrating significantly better performance than standard
MLFMM while being very suitable for commodity consumer
hardware.

IV. USING MLFMM FOR MONOSTATIC RCS
While using MLFMM rather than MoM clearly yields a

large reduction in memory footprint, it is not immediately
clear that there is a reduction in runtime, since we have not yet
quantified the number of iterations C(f, P ). Indeed, compar-
ing our implementation to MoM-based RCS solvers such as
[3], we clearly see that while MoM implementations focus
on minimizing the number of unknowns N , our MLFMM
implementation should focus on minimizing the number of
iterations C(f, P ). This is an important methodological dis-
tinction, because many methods for reducing the number of
unknowns are not error-controllable. In contrast, minimizing
the number of iterations leads to approximations that are easier
to control because they constitute algebraic errors made in
solving the discrete system of equations.

To quantify the number of iterations C(f, P ) if the angular
range is φint, we first consider the dependence of P on f by
considering the angular sampling density [12]

P =
φint

∆φ
=

4fρmaxφint

c0
(4)

where c0 is the speed of light and ρmax is the maximum object
radius in the observation plane. We note that P is the number
of right-hand sides for each polarization of the incident plane
wave, thus the total number of right-hand sides will be 2P .
Thus, we can express C(f, P ) as

C(f, P ) = 2NitP, (5)

where Nit is the number of iterations required for the iterative
solver to converge for each of the 2P right-hand sides.

A. Interpolation techniques

Several interpolation techniques exist for relaxing the sam-
pling density (4), either by interpolating the monostatic RCS
result or by considering the columns in the I matrix as being
functions of (θ, φ) and performing interpolation to retrieve the
current from additional incidence directions. We note that the
interpolation is performed on each polarization independently,
and thus considers only the P right-hand sides associated with
each polarization rather than the total 2P right-hand sides.

1) Interpolating the monostatic RCS: The monostatic RCS
can be interpolated by the many well-studied methods for
interpolation of functions on a sphere. This is particularly
relevant because the user might need a larger number of
incidence angles Pu than required by the sampling criterion
(4). In that case, when Pu > P , it is computationally much
more efficient to solve (3) with P right-hand sides and then use
interpolation, rather than solving (3) with Pu right-hand sides.
The actual interpolation method depends on the distribution of
the observation points:

• For full spherical cuts, i.e. scenarios where either θ or φ
go through a full period, interpolation techniques based
on the Fast Fourier Transform allow very high accuracies
even with sparse samplings.

• For full spheres, i.e. scenarios where the entire far-field
sphere is required, a number of highly efficient techniques
exist, see e.g. [13].

• For partial cuts or grids, i.e. scenarios where θ and/or
φ go through a subsection of their period, one has to
resort to the usual local interpolation techniques such as
Lagrange or Spline interpolation.

2) Interpolating the Current: Rather than interpolating the
RCS, one can interpolate the current density considering
the excitation of each basis function to be a function of
angular coordinates. A number of these methods exist [3],
[14], [15], but a particularly popular method is the Minimum
Residual Interpolation method [16]. This method uses the QR
factorization of the matrix Z I(:, 1 : k : P ) in a hierarchical
manner to allow interpolation of the remaining columns of I .



B. Iterative Solver

When using MLFMM, an iterative solver is needed to solve
the problem in Eq. (3). The most popular solver for MLFMM
problems appears to be the GMRES [17], which in its basic
formulation is a Krylov method based on a single right-hand
side. Thus, aside from reusing starting guesses [18], a standard
textbook RCS implementation does not exploit the fact that the
P systems in (3) are related. To improve on this, we have im-
plemented a Block-GMRES solver as discussed in [19]. Rather
than minimizing the residual R = Z I − V over the Krylov
space {R,Z R,Z

2
R, . . .}, the Block-GMRES minimizes all P

residuals R = Z I − V simultaneously over the Krylov space
{R,Z R,Z

2
R, . . .}. A Block-Krylov solver provides a lower

number of matrix-vector products than the NitP estimate given
in (5) by utilizing information from all the P right-hand sides
simultaneously. We stress that our implementation employs
deflation. Deflation for Krylov solvers involves reducing the
dimension of the Krylov subspace from P columns to Pd
columns by applying a rank-revealing decomposition to the
orthogonalized residual space.

V. RESULTS

In this section, we compute the monostatic RCS from 4
structures using the scheme outlined above, which has been
integrated with an MLFMM solver derived from GRASP. As
in the previous section, we use the symbol Pu to denote the
number of RHS requested by the user to stress that the number
of right-hand sides P actually involved in the computation
can be substantially lower than that. Further, the number of
RHS actually involved in the iterative solver is Pd. We note
that while some papers such as [3] only consider monostatic
RCS from scatterers with symmetry planes, which can be
exploited to yield better performance, none of the following
results exploit any kind of symmetry.

A. Sphere

We begin with a simple canonical test-case, a PEC sphere
of radius r = 1m. We use a Late 2013 MacBook Pro
laptop with a 2.6 GHz i7 processor. Considering the frequency
f = 2.25GHz, the sphere has an electrical radius of 7.51λ and
is discretized with N = 19200 5th-order basis-functions. CFIE
is applied. From (4) we find that P = 189 right-hand sides for
each polarization are necessary to characterize the monostatic
RCS in a full spherical cut, although we note that only a
single excitation for each polarization would be required for
this special scatterer, due to its special symmetry properties.

First, we compute the result with MoM, which requires
about 3 minutes of computation time and about 2.7 GB of
memory. Most of the time is spent computing and factorizing
the Z matrix, while applying the forward/backward solver
needed to find I takes a few seconds. We note that a RWG-
based MoM solution would require about 53 GB. For the
MLFMM solution, about 0.5 GB of memory is required,
and the computation takes 8 minutes, with deflation yielding
Pd = 105 for each polarization. Thus, while the small
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Fig. 1. Co-polar monostatic RCS for the sphere discussed in Section V-A
for a full spherical cut for φ = 0. The solid black line indicates the exact
solution. Note the narrow range of the y-axis.

TABLE I
SIMULATION DETAILS FOR THE EXPERIMENTS IN SECTION V-A.

Basis fun. order N Memory [GB] Time [min] RMS
5th 19200 0.5 8 3.1%
6th 30000 0.9 14 0.4%
7th 43200 1.5 27 0.1%

electrical size of the problem leads to MLFMM being slower
than MoM, the memory benefit from MLFMM is significant.

The spherical target allows us to quantify the accuracy of
the simulation by comparing with the analytical solution for
the monostatic RCS from a PEC sphere [20, (6.47)], which
yields σθθ = σφφ = 3.168m2 = 5.007 dBsm. The simulation
results are shown in Figure 1 for the co-polar component and
key performance data are summarized in Table I. In particular,
we note from Figure 1 that the results converge nicely to the
analytical value. We stress that the plot has a very narrow range
of values on the y-axis, spanning an interval of only 0.4 dB,
far within the required accuracy for most RCS applications.
Further, the results in Figure 1 show the benefits of increasing
the discretization accuracy, while Table I shows the associated
computational costs. The distinct error patterns for the 5th

and 6th order discretizations are due to mesh effects, which
are only visible for the present case because the sphere is
electrically small.

B. Helicopter

As a more realistic example, we now consider the simulation
of a CAD model of a PEC helicopter shown in Figure 2. To
challenge the implementation more thoroughly, the frequency
is increased to 8GHz in order to get an electrically much
larger structure. Thus, we move from our laptop to a worksta-
tion, a Dual Intel Xeon E5-2690 2.9GHz computer with 16
cores, to perform the simulation. With the longest dimension
of the helicopter being about 7 meter for a full spherical cut
in θ, (4) suggests that about P = 2012 incident directions are
needed for each polarization, for a total of 4024 right-hand
sides to be solved. We note that the structure does not have



Fig. 2. Mesh of helicopter at 8 GHz. The green see-through regions are
solved using the CFIE. The red, green, blue axis indicate x̂, ŷ, ẑ unit vectors,
respectively.
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Fig. 3. Monostatic RCS for the helicopter discussed in Section V-B for a full
spherical cut for φ = 0.

any symmetry planes due to the tail rotor. Further, aside from
the main rotor which is modelled as an infinitely thin curved
plate and thus solved using EFIE, the body of the helicopter
constitutes a closed structure where CFIE is applied. The mesh
has patches of varying sidelengths, between 0.026λ − 1.78λ,
which are populated with basis functions up to 7th order
depending on the size of the patch. The total number of basis
functions is N = 332879, and thus a direct MoM solution
using higher-order basis functions and the EFIE, similar to
that applied in [3], would require 413 GB of storage. With
our implementation, the maximum amount of memory used
is about 20 GB, with another 25 GB of disk space used
for storage of some components in the GMRES solver. The
computation requires about 11 hours of computation time, with
deflation yielding Pd = 686.

C. NASA Almond

The NASA Almond is a classic RCS benchmark, measured
and described in [21] as a simple mathematical model, that
none-the-less provides some challenges for monostatic RCS
computations and measurements. We initially consider the
target at 7GHz, and compare our solution to the results from
the original paper [21] as well as results from two popular

Efield
FEKO

This paper

Fig. 4. RCS of the NASA Almond at 7 GHz. Comparison of 4 independent
full-wave solutions and two sets of measurements.

TABLE II
SIMULATION DETAILS FOR THE EXPERIMENTS IN SECTION V-C. THE ()

NUMBERS INDICATE GB OF HARD-DISK USED.

Code f N Time Memory Platform
[GHz] [min] [GB] (Table III)

[24] 21 99915 61 3 Xeon
[24] 75 1043577 4369 113 Xeon
[25] 75 110000 438 194 HPC
[25] 150 370000 1140 2294 SSC
This paper 75 82494 110 7 (+3) Laptop
This paper 150 302346 1053 12 (+17) Laptop

TABLE III
DETAILS ON COMPUTING PLATFORMS FROM TABLE II.

Xeon 4 Xeon X5482 machine. Code implemented in Matlab.
HPC 6 node cluster, 2 Xeon E5620 on each node.
SSC Shanghai Supercomputer Center 2011. 35 nodes, 16 cores on

each node.
Laptop 2013 MacBook Pro i7 2.6 GHz.

software vendors, Efield [22] and FEKO [23]. This comparison
is shown in Figure 4, along with the two sets of measurements
from the original paper [21] and the MoM code from that paper
(HH Ferm). Note that all four computational codes give nearly
identical results, while the measurements deviate somewhat.
Next, table II indicates the performance of our code compared
with results found in the literature for the frequencies 21 GHz,
75 GHz, and 150 GHz. We stress that these results have been
achieved on different computing platforms, as indicated by the
right-most column in Table II which refers to Table III. While
the tables offer several interesting conclusions, the main result
is that MLFMM provides a very strong frequency scaling,
allowing us to solve very large problems much more efficiently
than other codes, even when running on a simple laptop.

D. Reentry vehicle

As a final example, we consider the shape described in [26],
where a reentry vehicle is analyzed using the RCS module of
the Lucernhammer software. The circular symmetric structure



Fig. 5. Mesh of the PEC reentry vehicle. The structure is a body of revolution,
with maximum diameter 0.4m and a length of 1m.

TABLE IV
SIMULATION DETAILS FOR THE EXPERIMENTS IN SECTION V-D.

Code f N Time [min] Memory [GB]
[26] 5GHz 155076 42 N/A
[26] 9.5GHz 557436 828 N/A
Our - MoM 5GHz 7340 0.5 0.45
Our - MLFMM 5GHz 7340 2 0.25
Our - MoM 9.5GHz 25312 6 4.82
Our - MLFMM 9.5GHz 25312 11 0.81

is shown in Figure 5. The results in [26] were obtained by
considering the structure at f = 5GHz and f = 9.5GHz
using their RWG-based MoM code accelerated with the Adap-
tive Cross Approximation, running on a Intel Xeon W5580
workstation with 8 cores and 128 GB RAM. We run the case
at the same frequencies, but restrict ourselves to using the
MacBook Pro 2013 laptop discussed in Section V-A.

The important performance metrics are shown in Table IV.
The benefits of our higher-order discretization, which also
yields a very good mesh on this structure, is clear when com-
pared with an RWG solver: A reduced number of unknowns
leads to a much lower computation time (and presumably also
memory, although memory counts are not available from [26]).

VI. CONCLUSION

It was shown that using MLFMM rather than MoM yields
a faster and much less memory-intensive solution to the
full-wave simulation of the monostatic RCS from a struc-
ture — indeed, the low asymptotic scaling of MLFMM al-
lows electrically much larger problems to be solved even
on modest computing hardware. Further, a range of efforts
were described that significantly reduces the computational
requirements while allowing strong error control, such as the
use of higher-order basis functions, interpolation techniques,
and an efficient iterative solver.

An early-stage implementation of these techniques was
shown to provide high accuracy and strong performance on
four examples, including a helicopter, the Nasa Almond, and
a reentry vehicle, the latter of which allowed an independent
illustration of the strengths of our higher-order discretization
when compared to a commercial product based on the widely
used RWG discretization.
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