Metasurface Waveguides Applied to Matched Feeds for Reflector Antennas

Michael Forum Palvig1,2, Erik Jørgensen2, Peter Meincke2, Olav Breinbjerg1
1Department of Electrical Engineering, Electromagnetic Systems, Technical University of Denmark, Kgs. Lyngby, Denmark
2TICRA, Copenhagen, Denmark

Abstract—Waveguides with anisotropic surface impedance boundaries have been investigated for the purpose of matched feeds for offset reflectors. Matched feeds employ higher order waveguide modes to cancel out cross polarization introduced by the offset geometry. Since the higher order modes propagate at different speeds than the fundamental mode in conventional waveguides, it is challenging to meet phase relationship requirements over a large band. We have found that traditional corrugated waveguides are poorly suited for matched feed applications. However, other surfaces that satisfy the balanced hybrid corrugated waveguides are poorly suited for matched feed applications. First, a brief theory of modal solutions in matched feeds is given, following the approach of e.g. [9] and [10].

II. THEORY

Consider a cylindrical waveguide with circular cross-section which extends along z. We assume solutions which are travelling waves in the positive z-direction with phase constant \(\beta \), i.e. the field variation along z is \(e^{-j\beta z} \), given a harmonic time factor of \(e^{j\omega t} \). The longitudinal (z) components of the fields then satisfy the scalar Helmholtz equation. In a cylindrical coordinate system with its z-axis along the center of the waveguide, the longitudinal field components have solutions of the form

\[
E_z(\rho, \phi, z) = E_0 J_m(k_c \rho) \frac{\cos m\phi}{\sin (m\phi)} e^{-j\beta z} \tag{1a}
\]

\[
H_z(\rho, \phi, z) = \pm E_0 \frac{\gamma}{Z_0} J_m(k_c \rho) \frac{\sin m\phi}{\cos (m\phi)} e^{-j\beta z}, \tag{1b}
\]

from which it follows that the so-called hybrid factor \([9]\) is

\[
\gamma = Z_0 \frac{H_z(\rho, \phi, z)}{E_z(\rho, \phi, z)}, \tag{2}
\]

which measures the ratio of longitudinal E- and H-fields for a solution. \(Z_0 \) is the free space impedance. The top and bottom choices of \(\cos, \sin, +, - \) correspond to two orthogonal solutions. The hybrid factor is zero and infinite for pure TM and TE modes, respectively. Any other value of \(\gamma \) is a hybrid mode: If the hybrid factor is positive, we denote the solution an HE hybrid mode, and if negative, an EH hybrid mode [9].

Given the simple z-variation of the field, the longitudinal components sufficiently characterize the field and the transverse component can be found from these:

\[
E_t = \frac{j}{k_z^2} (\omega \mu z \times \nabla_t H_z - \beta \nabla_t E_z) \tag{3a}
\]

\[
H_t = \frac{j}{k_z^2} (\omega \varepsilon \nabla_t E_z \times \hat{z} - \beta \nabla_t H_z). \tag{3b}
\]

We now impose boundary conditions in the form of normalized surface impedances at the wall of the waveguide

\[
z_e = \frac{E_z}{Z_0 H_\phi}, \quad z_\phi = \frac{E_\phi}{Z_0 H_z}. \tag{4}
\]

The transverse field quantities are obtained from the longitudinal ones and evaluated on the boundary. The boundary conditions are then manipulated to obtain an equation which...
links the wavenumber, \(k \), to the transverse wavenumber \(k_c \) — the characteristic equation:

\[
j j^2 m^2 (k_c a)^2 \left[k_x^2 (k_c a)^2 - k_z^2 \right] + j J_m^2 (k_c a) k_z - J_m(k_c a) J'_m(k_c a) \frac{k_c}{k} [z z_t + 1] = 0.
\]

The characteristic equation is solved numerically for each \(k \).

For a given \(k \), there may be several \(k_c \) which satisfy the equation, corresponding to different modal solutions.

III. Dispersion Analysis

Using the simple theory outlined in the previous section, we can investigate the modal solution of waveguides with different anisotropic wall impedances. A convenient way to analyze the modes is by dispersion diagrams. They provide a relation between the electrical radius of the waveguide (or frequency) and the phase constant of each mode. The phase constant is found from \(k \) and \(k_c \) as

\[
\beta = \sqrt{k^2 - k_c^2}.
\]

For a waveguide with PEC walls, the transverse wavenumber, \(k_c \), is independent of \(k \) — this is not generally true for impedance surface waveguides.

For the purposes of this analysis, we shall concentrate on impedances which satisfy the balanced hybrid condition and thus support balanced hybrid modes. These are modes for which \(|\gamma| = 1 \). The balanced HE modes are desirable, as they approach totally parallel field lines when \(k \) and \(\beta \) are close. It can be shown that the balanced hybrid condition is fulfilled when

\[
z_\phi = \frac{1}{z_x} \text{ or } x_\phi = -\frac{1}{x_z}.
\]

where \(x_z \) and \(x_\phi \) are normalized reactances, i.e. for lossless surfaces \(z_z = j x_z \) and \(z_\phi = j x_\phi \). Under the balanced condition balanced EH modes are also present (\(\gamma = -1 \)) in addition to the HE modes. These are usually not desirable and one would want to avoid exciting them.

In classical matched feed design, the higher order mode is excited at the beginning of the horn and then propagates along with the primary mode in the rest of the horn. The phase relationship between the modes at the aperture of the horn is of vital importance. Thus, we want the phase constants of the two modes to have the same difference over the frequency band of interest, thereby making the phase difference at the aperture constant. This is impossible for smooth walled horns with the TE\(_{21}\) compensating mode.

Additionally, if the compensating mode is excited along a distributed section of the impedance waveguide, we know from directional coupler theory [11], that the two modes must have not only a constant difference in phase constant, but the same phase constant.

A. Soft surface

Fig. 1 shows the dispersion diagram of a waveguide with infinite longitudinal and zero azimuthal impedance — corresponding to a soft surface, e.g. a transversely corrugated surface at resonance. This surface satisfies the hybrid condition with both sides of Eq. (7) being zero. In a real corrugated waveguide, the surface impedance would change with frequency, resulting in different dispersion characteristics, but Fig. 1 shows results qualitatively similar to those at the aperture section of a corrugated horn. Evidently, the HE\(_{11}\) and HE\(_{21}\) modes have different dispersion characteristics. The two modes have varying difference in phase constant with frequency. Consequently, if they are allowed to propagate together for a length of waveguide, their mutual phase difference at the end of the section will change with frequency — which is exactly what should be avoided. This indicates that traditional corrugated horns have no advantage over smooth horns in the sense of matched feeds.

B. Small Capacitive Longitudinal Impedance

It turns out that impedance pairs where the longitudinal reactance, \(x_z \), is negative (capacitive) and small, are more interesting for our purposes. We still require the balanced hybrid condition, Eq. (7), to be met. Fig. 2 shows examples of surfaces in this range with \(x_z \) equal to \(-1\), \(-0.5\), and \(-0.1\), respectively. For \(x_z = -1 \), the HE\(_{11}\) and HE\(_{21}\) modes are much closer than in the “corrugated” case of Fig. 1, and also have a more constant difference. Decreasing negative values of \(x_z \) moves the two phase constants even closer, and closer to that of free space. A surface of this type would be highly desirable for matched feed applications.

IV. Implementation

The surface impedances in the previous section are idealized. An optimized surface for the matched feed purposes of
this paper, has not yet been found. However, looking in the literature, it does seem feasible. The horns designed by Wu et al. and Scarborough et al. [5], [6], [7], [8], feature impedances which are balanced and have a normalized longitudinal reactance of around $x_z = -1$. Again, their goal for optimization is not matched feeds, but the resulting surface happens to be promising for matched feed applications. The same is true for the surface designed in [12]. The surface designs might be even better suited if an optimization goal was added to possible make $|x_z|$ smaller.

V. CONCLUSION

We have made a study of circular cylindrical waveguides with anisotropic impedance walls for the possible application to offset reflector matched feed horns. The suitability of such waveguides relies on the dispersion characteristics of the primary HE_{11} mode and the HE_{21} mode used to compensate cross polarization. It is desirable that the phase constant of the two modes are close, or at least that the difference in phase constant does not change with frequency.

We can conclude that corrugated waveguides are unsuited to meet these requirements, but other balanced impedance surfaces are well suited. These surfaces are characterized by a capacitive (negative) reactance in the longitudinal direction and an inductive (positive) reactance in the azimuthal direction. Surfaces like this are shown in the literature to be realizable, and thus provide a promising platform for novel matched feed designs.

REFERENCES