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Abstract—Waveguides with anisotropic surface impedance
boundaries have been investigated for the purpose of matched
feeds for offset reflectors. Matched feeds employ higher order
waveguide modes to cancel out cross polarization introduced by
the offset geometry. Since the higher order modes propagate
at different speeds than the fundamental mode in conventional
waveguides, it is challenging to meet phase relationship re-
quirements over a large band. We have found that traditional
corrugated waveguides are poorly suited for matched feed appli-
cations. However, other surfaces that satisfy the balanced hybrid
condition, but have a small capacitive longitudinal reactance
and large inductive azimuthal reactance show very promising
properties: In a large band, HE11 and HE21 have similar
propagation characteristics.

Index Terms—metasurface, matched feed, offset reflector an-
tenna.

I. INTRODUCTION

Prime focus offset reflector antennas have many advan-
tages, but suffer from high cross polarization [1]. It is a
well known trade-off that a more compact system results in
higher cross polarization. By using Bem’s [2] analysis of the
focal region field, Rudge and Adatia [3] proposed that the
cross polarization be compensated by additional waveguide
modes in the feed horn. For smooth walled circular horns, the
TE21 mode can compensate cross polarization if excited in
phase quadrature with the fundamental mode, TE11, though
other modes can also be used [4]. For corrugated horns, the
corresponding compensating mode is HE21.

The corrugated horn represents a special case of an
anisotropic impedance boundary waveguide. Here we shall
investigate the propagation of higher order hybrid modes in
more general waveguides with anisotropic impedance walls.
Such surfaces may be implemented by periodic structures on
the horn/waveguide wall, i.e. metasurfaces.

Wu et al. and Scarborough et al. have successfully demon-
strated horns with metasurface walls [5], [6], [7], [8] which
exhibit very good performance over a wide band. However,
their focus was not matched feeds, but a good co-polarized
feed and thus did need analysis of modes with higher order
azimuthal index.

By considering dispersion characteristics of the hybrid
modes HE11 and HE21 in circular cylindrical waveguides
with anisotropic boundary conditions, we shall investigate
if there are metasurface waveguides suitable for matched
feed applications. First, a brief theory of modal solutions in

impedance waveguides will be given, following the approach
of e.g. [9] and [10].

II. THEORY

Consider a cylindrical waveguide with circular cross-section
which extends along z. We assume solutions which are trav-
elling waves in the positive z-direction with phase constant β,
i.e. the field variation along z is e−jβz , given a harmonic time
factor of ejωt. The longitudinal (z) components of the fields
then satisfy the scalar Helmholtz equation. In a cylindrical
coordinate system with its z-axis along the center of the
waveguide, the longitudinal field components have solutions
of the form

Ez(ρ, φ, z) = E0Jm(kcρ)
cos
sin

mφ e−jβz (1a)

Hz(ρ, φ, z) = ±E0
γ

Z0
Jm(kcρ)

sin
cos

mφ e−jβz, (1b)

from which it follows that the so-called hybrid factor [9] is

γ = Z0
Hz(ρ, φ, z)

Ez(ρ, φ− π
2m , z)

, (2)

which measures the ratio of longitudinal E- and H-fields for a
solution. Z0 is the free space impedance. The top and bottom
choices of cos, sin, +, and − correspond to two orthogonal
solutions. The hybrid factor is zero and infinite for pure TM
and TE modes, respectively. Any other value of γ is a hybrid
mode: If the hybrid factor is positive, we denote the solution
an HE hybrid mode, and if negative, an EH hybrid mode [9].

Given the simple z-variation of the field, the longitudinal
components sufficiently characterize the field and the trans-
verse components can be found from these:

Et =
j

k2c
(ωµẑ×∇tHz − β∇tEz) (3a)

Ht =
j

k2c
(ωε∇tEz × ẑ− β∇tHz) . (3b)

We now impose boundary conditions in the form of nor-
malized surface impedances at the wall of the waveguide

zz = −
Ez
Z0Hφ

, zφ =
Eφ
Z0Hz

. (4)

The transverse field quantities are obtained from the longi-
tudinal ones and evaluated on the boundary. The boundary
conditions are then manipulated to obtain an equation which



links the wavenumber, k, to the transverse wavenumber kc —
the characteristic equation:

jJ2
m(kca)

[
zz

m2

(kca)2

(
k2c
k2
− 1

)
− zt

k2c
k2

]
+ jJ ′2m(kca)zz − Jm(kca)J

′
m(kca)

kc
k

[zzzt + 1] = 0.

(5)

The characteristic equation is solved numerically for each k.
For a given k, there may be several kc which satisfy the
equation, corresponding to different modal solutions.

III. DISPERSION ANALYSIS

Using the simple theory outlined in the previous section,
we can investigate the modal solution of waveguides with
different anisotropic wall impedances. A convenient way to
analyze the modes is by dispersion diagrams. They provide
a relation between the electrical radius of the waveguide (or
frequency) and the phase constant of each mode. The phase
constant is found from k and kc as

β =
√
k2 − k2c . (6)

For a waveguide with PEC walls, the transverse wavenumber,
kc, is independent of k — this is not generally true for
impedance surface waveguides.

For the purposes of this analysis, we shall concentrate on
impedances which satisfy the balanced hybrid condition and
thus support balanced hybrid modes. These are modes for
which |γ| = 1. The balanced HE modes are desirable, as they
approach totally parallel field lines when k and β are close.
It can be shown that the balanced hybrid condition is fulfilled
when

zφ =
1

zz
or xφ = − 1

xz
. (7)

where xz and xφ are normalized reactances, i.e. for lossless
surfaces zz = jxz and zφ = jxφ. Under the balanced
condition balanced EH modes are also present (γ = −1) in
addition to the HE modes. These are usually not desirable and
one would want to avoid exciting them.

In a classical matched feed design, the higher order mode
is excited at the beginning of the horn and then propagates
along with the primary mode in the rest of the horn. The phase
relationship between the modes at the aperture of the horn is
of vital importance. Thus, we want the phase constants of the
two modes to have the same difference over the frequency
band of interest, thereby making the phase difference at the
aperture constant. This is impossible for smooth walled horns
with the TE21 compensating mode.

Additionally, if the compensating mode is excited along a
distributed section of the impedance waveguide, we know from
directional coupler theory [11], that the two modes must have
not only a constant difference in phase constant, but the same
phase constant.

A. Soft surface

Fig. 1 shows the dispersion diagram of a waveguide with
infinite longitudinal and zero azimuthal impedance — cor-
responding to a soft surface, e.g. a transversely corrugated
surface at resonance. This surface satisfies the hybrid condition
with both sides of Eq. (7) being zero. In a real corrugated
waveguide, the surface impedance would change with fre-
quency, resulting in different dispersion characteristics, but
Fig. 1 shows results qualitatively similar to those at the
aperture section of a corrugated horn. Evidently, the HE11

and HE21 modes have different dispersion characteristics. The
two modes have varying difference in phase constant with
frequency. Consequently, if they are allowed to propagate
together for a length of waveguide, their mutual phase differ-
ence at the end of the section will change with frequency —
which is exactly what should be avoided. This indicates that
traditional corrugated horns have no advantage over smooth
horns in the sense of matched feeds.
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Fig. 1. Dispersion diagram for a circular waveguide with infinite longitudinal
impedance, xz = ∞ and zero azimuthal, xφ = 0. This corresponds to a
corrugated surface where the corrugations are λ/4 deep. Blue curves represent
m = 1 azimuthal variation and orange curves represent m = 2 variation. Full
lines are HE modes and dotted lines are EH modes.

B. Small Capacitive Longitudinal Impedance

It turns out that impedance pairs where the longitudinal
reactance, xz , is negative (capacitive) and small, are more
interesting for our purposes. We still require the balanced
hybrid condition, Eq. (7), to be met. Fig. 2 shows examples of
surfaces in this range with xz equal to −1, −0.5, and −0.1,
respectively. For xz = −1, the HE11 and HE21 modes are
much closer than in the ”corrugated” case of Fig. 1, and also
have a more constant difference. Decreasing negative values
of xz moves the two phase constants even closer, and closer
to that of free space. A surface of this type would be highly
desirable for matched feed applications

IV. IMPLEMENTATION

The surface impedances in the previous section are ideal-
ized. An optimized surface for the matched feed purposes of
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Fig. 2. Dispersion diagrams for a circular waveguide with three sets of surface
reactances fulfilling the balanced hybrid condition: xzxφ = −1. Blue curves
represent m = 1 azimuthal variation and orange curves represent m = 2
variation. Full lines are HE modes and dotted lines are EH modes.

this paper, has not yet been found. However, looking in the
literature, it does seem feasible. The horns designed by Wu et
al. and Scarborough et al. [5], [6], [7], [8], feature impedances
which are balanced and have a normalized longitudinal reac-
tance of around xz = −1. Again, their goal for optimization
is not matched feeds, but the resulting surface happens to be

promising for matched feed applications. The same is true
for the surface designed in [12]. The surface designs might
be even better suited if an optimization goal was added to
possible make |xz| smaller.

V. CONCLUSION

We have made a study of circular cylindrical waveguides
with anisotropic impedance walls for the possible application
to offset reflector matched feed horns. The suitability of
such waveguides relies on the dispersion characteristics of the
primary HE11 mode and the HE21 mode used to compensate
cross polarization. It is desirable that the phase constant of the
two modes are close, or at least that the difference in phase
constant does not change with frequency.

We can conclude that corrugated waveguides are unsuited
to meet these requirements, but other balanced impedance
surfaces are well suited. These surfaces are characterized by
a capacitive (negative) reactance in the longitudinal direc-
tion and an inductive (positive) reactance in the azimuthal
direction. Surfaces like this are shown in the literature to be
realizable, and thus provide a promising platform for novel
matched feed designs.
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