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Abstract—A Higher-Order Multilevel Fast Multipole Method
(HO MLFMM) is presented for the efficient calculation of
waveguide scattering parameters in cases where several reflector
feeds are mounted on electrically large satellite platforms. The
efficiency is obtained by: 1) using a Block Krylov method for
solving the HO MLFMM problem for the required large number
of right-hand sides and 2) implementing an out-of-core solution,
taking into account the fact that the memory distribution of HO
MLFMM is different from the standard low-order MLFMM.

I. INTRODUCTION

Multiple antenna systems on satellite platforms are often
tightly packed, and the entire scattering matrix is needed
for accurate analysis and design. Space applications typically
require extreme accuracy, with a desired dynamic range of-
ten exceeding 100 dB, and a full-wave method is therefore
required to determine the scattering matrix. At the same time,
most satellite platforms are electrically large, and a memory-
efficient full-wave method is fundamental if analysis should
be performed on computers with modest memory.

The Higher-Order Multilevel Fast Multipole Method (HO
MLFMM), recently introduced in [1], is capable of reaching
a high level of accuracy with a very small memory footprint,
and is therefore a perfect candidate for the above-mentioned
full-wave method. However, to compute a P by P scattering
matrix, the MLFMM problem must be solved for P right
hand sides (RHS), resulting in long solution time. Several
approaches for MLFMM solutions with multiple RHS have
been developed for monostatic RCS applications, but these
methods are mainly applicable when there is a strong correla-
tion between the various RHS. To reduce the solution time for
scattering matrix computations, we have introduced the block
GMRES solver into the HO MLFMM algorithm and show that
this solver reduces the solution time.

In addition, the HO approach implies that a relatively large
part of the memory is occupied by the near-interaction matrix,
whereas the memory required for the MLFMM acceleration
occupies a smaller part of the memory. This property means
that an Out-of-Core (OoC) HO MLFMM solution, which
employs disk storage instead of RAM, is much more memory
efficient than the OoC version of the standard, widely used
low-order MLFMM implementation. Hence, the OoC HO

MLFMM is well-suited for extending the range of solvable
problems on a given computer hardware. In this paper we
investigate the memory distribution of the HO MLFMM and
illustrate the performance of the OoC HO MLFMM.

II. HO MLFMM WITH MULTIPLE RIGHT-HAND SIDES

When computing the scattering matrix of a multiport an-
tenna system, a system of equations with multiple right-hand
sides is set up

Z I = V (1)

where V and I have N rows and P columns. When N is
large, these problems are typically solved by P consecutive
applications of an iterative linear solver. In some applications,
the convergence for the (i + 1)’st right-hand side can be im-
proved by using information from the solution of the i’th right-
hand side. Unfortunately, this trick cannot be applied when
the excitations are uncorrelated. A more thorough approach is
the use of Block Krylov solvers - these solve all P systems
simultaneously, requiring P matrix-vector products with Z
per iteration, but compressing all the information from those
P systems into one Krylov subspace. One such method, the
Block GMRES, is described in detail in [2] and this method
has been implemented in the HO MLFMM solver.

As a simple example of the properties of the Block GMRES,
we consider an offset paraboloidal reflector with circular pro-
jected rim, illuminated by an axially corrugated horn designed
for use in the 20-30 GHz range. We fix the frequency at
30 GHz, resulting in an overmoded horn and include 20
waveguide modes in the scattering matrix computation to
ensure that the higher-order modes are not detrimental to the
performance. The scenario is illustrated in Fig. 1, and the total
number of RHS in the system is P = 20.

The performance of the Block GMRES solver is contrasted
with the standard P applications of non-restarted GMRES in
Table I, with the relative residual tolerance of 10−3. The key
performance parameter is the number of matrix-vector prod-
ucts required for all P right-hand sides to achieve convergence
- for the standard GMRES this is 354 while it is 280 for Block
GMRES. Thus, the Block GMRES reduces the total number of
matrix-vector products with about 20% for this specific case.



Fig. 1. Mesh of the offset D = 100λ paraboloidal reflector, illuminated by
an axially corrugated horn, used as a test case for the Block GMRES solver.
Note that each patch has roughly 1.5λ sidelength.

TABLE I
NUMBER OF MATRIX-VECTOR MULTIPLIES

Number Number of Matrix-vector products
Method of runs iterations per iteration Total
GMRES 20 13-22 1 354
Block GMRES 1 14 20 280

III. OOC HO MLFMM SOLVER

Although the HO MLFMM algorithm is extremely memory
efficient, there is still a strong demand for solving problems
requiring more memory than available. This need can be
addressed by developing an OoC solver, thereby reducing the
peak memory requirement at the expense of a longer solution
time.

For low-order MLFMM, approximately 50% of the memory
is used for the near matrix and the basis functions patterns.
The remaining part of the memory is occupied by group
patterns, translation operators, and other MLFMM data needed
several times in each iteration. For HO MLFMM, however,
approximately 75% of the memory is used for the near matrix
and the basis functions patterns. Since a larger part of the
memory is occupied by data that is only needed once per
iteration, the HO MLFMM is more suitable for an OoC
solution than low-order MLFMM.

The difference outlined above and the polynomial expansion
order have a direct impact on the amount of data that can be
stored on disk and the data that must be kept in RAM. This is
illustrated in Figure 2, showing the amount of RAM needed
when the OoC HO MLFMM is used to solve the same test
case as studied in the previous section. It is observed that the
memory consumption decreases significantly as the expansion
order increases. Also, the curve for the highest expansion order
p = 5 is almost flat, indicating that the memory requirement
is independent of the solution accuracy.
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Fig. 2. Memory (RAM) required by the OoC HO MLFMM solver for various
expansion orders.

TABLE II
OUT-OF-CORE PERFORMANCE ON A PARABOLOIDAL REFLECTOR WITH

DIAMETER D.

D [λ] In-core Out-of-Core
Memory [GB] Time Memory [GB] Time

50 0.68 1:11 min 0.11 1:37 min
100 2.60 5:05 min 0.32 6:43 min
200 10.25 24:11 min 1.16 40:00 min
400 20.08 N/A 4.42 4:11 hrs

The performance of the OoC HO MLFMM algorithm is
now illustrated by considering the paraboloidal reflector of
Figure 1 with different diameters D between 50λ and 400λ.
The radiation patterns have been computed with HO MLFMM
on a laptop with 16 GB RAM. The memory and CPU time are
reported in Table II for both the in-core and the out-of-core
solution. It is observed that the required RAM is between 5
and 10 times lower with the OoC solver, at the expense of a
longer runtime.

IV. CONCLUSION

We have shown that a Block GMRES solver can be used
to reduce the iteration time when the HO MLFMM is applied
for computation of scattering matrices.

We have also shown that the HO MLFMM results in a
relatively large near matrix which makes the algorithm suitable
for an out-of-core solution. When the OoC HO MLFMM is
used, a very high solution accuracy can be obtained by p-
refinement without affecting the required in-core memory.

At the conference we will illustrate the performance of
the Block GMRES solver and OoC HO MLFMM for cases
involving electrically large satellite platforms.
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