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Abstract—A higher-Order (HO) quadrilateral mesher is pre-
sented along with a HO method of moments formulation for
unconnected meshes. A numerical example is presented to vali-
date the new formulation.

I. INTRODUCTION

Higher-Order (HO) Method of Moments (MoM) [1] relies
on a HO polynomial expansion of the unknown surface
current density on large (up to 2 by 2 wavelengths), HO
(curved) quadrilateral patches. In comparison to the widely
used low-order approach based on RWG basis functions [2],
i.e., first-order approximations in both current expansion and
geometry, the HO formulation is much more efficient in terms
of memory consumption and computational speed. However,
higher efficiency is only obtained if the quadrilateral patches
are as large as possible throughout the entire mesh. For large
surfaces containing small geometrical structures, for instance
holes or rapidly varying rims, this requirement constitutes a
challenge to the meshing procedure: Small patches should
only be generated near the small geometrical details, and
not throughout the entire surface. Moreover, for complicated
structures obtained from CAD, typically containing numerous
surfaces, these surfaces are usually meshed independently with
the requirement that the mesh is connected at edges joining
two surfaces. The connectivity requirement — which is a result
of the continuous current assumption of the mixed-potential
MoM-formulation — implies that small patches on one surface,
as a result of small geometry details, also force small patches
on the connected surfaces, thus jeopardizing the HO-MoM
efficiency.

In this paper we present a remedy to the two problems pre-
sented above: local geometrical details and mesh connectivity.
First, in Section [, a HO quadrilateral mesher is discussed,
with the capability of generating meshes of varying patch
size on a single surface. Second, in Section we present a
Discontinuous Galerkin Integral Equation (DGIE) formulation
for HO-MoM that allows an unconnected HO quadrilateral
mesh, thus eliminating the connectivity requirement across
edges of two joined surfaces. Finally, a numerical example is
presented in Section [IV] showing that the DGIE-formulation
for an unconnected HO mesh yields the same results as does
the usual MoM-formulation for a connected HO mesh.

II. HIGHER-ORDER QUADRILATERAL MESHING

Two main approaches exist for producing quadrilateral
meshes: indirect and direct methods. With indirect methods

a triangular mesh is first made, and this mesh is subse-
quently transformed into the desired quadrilateral one. With
direct methods the quadrilaterals are generated directly on the
surface. Paving by Blacker and Stephenson [3], which is a
direct method, appears to be the most promising approach,
particularly because it allows for high mesh quality also when
patches of varying sizes are present on a surface due to
different geometrical details. Paving, which was originally
developed for 2D-surfaces, is an advancing front method
where complete rows of elements are inserted, starting from
the exterior boundary and proceeding towards the interior of
the surface. If the surface has holes, paving is also performed
from these interior boundaries, working towards the outer part
of the surface. The paving algorithm has been extended to 3D-
surfaces [4]], to element- instead of row-based insertion [5]], and
optimized for electromagnetic tools [6]]. The meshes shown in
all these papers have in common that the seed points on the
boundaries are equidistant, resulting in patches of equal size
on the entire surface. Hence, if small geometrical details are
present, the mesh size is reduced accordingly on the entire
structure, which is not efficient for HO-MoM.

In this work we have optimized the paving approach to
work with seed points of non-equidistant spacing. With this
implementation, the patch size can easily be adjusted across a
surface with varying levels of geometrical details, an example
of which is shown in Figure [I]

III. METHOD OF MOMENTS FORMULATION FOR
UNCONNECTED MESHES

In the widely used mixed-potential MoM formulation it
is required that the normal component of the current is
continuous across patches, and this forces the mesh to be
connected. Figure [2] illustrates a problem associated with this
fact. The attachment of the boom to the upper surface close
to the edge implies small patches in this region, and due to
the connectivity requirements, small patches are also present
in the mesh of the side surface.

Peng et al. [[7] have recently developed a DGIE-formulation
that eliminates the continuity requirement of the current, thus
allowing unconnected meshes. The formulation was demon-
strated for RWG basis functions and flat, triangular meshes.
We have modifed the DGIE formulation to work for HO
basis functions and HO quadrilateral meshes. With this new
formulation, the unconnected mesh of Figure E] can be used
in the analysis. In this mesh, as opposed to the connected



Fig. 1. Example illustrating the capability of the implemented paving mesher
to adapt to geometrical details of varying size.

Fig. 2. Connected mesh for standard MoM.

counterpart in Figure 2} the mesh on the side is not affected
by the presence of the small patches near the boom.

Fig. 3. Unconnected mesh for DGIE formulation.

IV. EXAMPLE

The paving mesher and the DGIE formulation of Sections [[I]
and [Tl have been implemented in TICRA’s GRASP soft-
ware [8]], and subsequently used to calculate the surface current
density on a 10 by 10\ by 10\ box illuminated by a Gaussian
feed, located and oriented to create a strong excitation of
two of the faces and their common edge. The problem is
analyzed using three different meshes, two connected and one
unconnected. As seen in the same figure, the calculated surface
current density is identical for the three meshes, thus validating
the DGIE formulation. See [9] for more advanced examples.

Fig. 4. Induced surface current density obtained on three different meshes.
Left column: coarse mesh, centre column: fine mesh, right column: uncon-
nected mesh with DGIE. The bottom row shows the same currents as the top
row, but mesh lines have been included to better illustrate where potential
current artifacts could be located.
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