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Abstract—Results using a new translation operator for the
Multi-Level Fast Multipole Method are presented. Based on
Gaussian beams, the translation operator allows a significant
portion of the plane-wave directions to be neglected, resulting in
a much faster translation step.

I. INTRODUCTION

The Multi-Level Fast Multipole Method (MLFMM) is a
popular method for reducing the memory and computational
complexity of solving the electromagnetic scattering problem.
Based on a Galerkin discretization, MLFMM achieves reduced
complexity by grouping the basis functions hierarchically and
letting larger groups interact over greater distances.

The MLFMM represents the matrix vector product ZI as

ZI = ZnearI + F(I) (1)

where Znear is the near-matrix, containing the interactions
between basis functions that are too closely spaced to apply
MLFMM. The elements in this matrix are computed as in the
normal Galerkin approach. F denotes the operation perfomed
by applying MLFMM.

The interaction between two well-seperated basis functions
fj ,fi, belonging to groups m and m′ respectively, can be
computed by

Zj,i = κ

"
Rjm(k, k̂) ·

(
TL(k, k̂, rmm′)Vim′(k, k̂)

)
d2k̂,

(2)
with rmm′ = rm − rm′ , where rm is the center of group
m, and for the Electric Field Integral Equation (EFIE) κ =
ikη4π , where η is the free-space impedance. For EFIE, the basis
function signature Rjm(k, k̂p) = V ∗jm(k, k̂p), where ∗ denotes
complex conjugation, and

Vjm(k, k̂) =

ˆ
r2

fj(r) · [I − k̂k̂]eikk̂·(rm−r) d2r, (3)

and Rokhlins translation function TL [1] is computed as

TL(k, k̂,x) =

L∑
l=0

il(2l + 1)h
(1)
l (k|x|)Pl(k̂ · x̂). (4)

Herein, k̂ is the unit wave vector, x is the vector between
two group centers directed towards the receiving group, x̂ =

x/|x|, h(1)
l is the spherical Hankel function of the first kind

and order l, and Pl is the Legendre polynomial of order l. The

number of distinct plane wave directions is KL = 2(L+ 1)2,
and L is typically chosen as

L = kD + 1.8β2/3(kD)1/3 (5)

where D is the group diameter and the relative error is 10−β .
For each matrix vector product, the translation operator

TL is performed on every pair of interacting groups. Thus,
the translation operator is a significant contribution to the
overall matrix vector multiplication time. Therefore, there has
been significant effort into developing a translation operator
that discards some of the plane-wave directions [2]–[5]. The
present paper uses the Gaussian translation operator from
[5], which comes with a sampling theorem that guarantees
arbitrary accuracy, all the way to machine precision.

II. GAUSSIAN TRANSLATION OPERATOR

Adding an imaginary vector to the source point and subtract-
ing this same imaginary vector from the origin of the source
coordinate system, such that the real displacement between
source and receiver becomes

r1 +rmm′ +r2 = (r1 +r2− i∆r̂mm′)+ r̂mm′(|rmm′ |+ i∆),
(6)

where r1 = rm−r and r2 = r′−rm′ , the translation operator
becomes [5]

TN (k, k̂,x,∆) = (7)

ek∆(k̂·x̂−1)
N∑
n=0

in(2n+ 1)h̃(1)
n (k[|x|+ i∆])Pn(k̂ · x̂),

with h̃
(1)
n (x) = h

(1)
n (x)eIm(x) being the normalized spherical

Hankel function. This translator is based on a point source
residing in the complex domain — such a point source has a
far-field pattern which locally has Gaussian behaviour, hence
the name Gaussian translation operator.

By increasing ∆, the error for a fixed upper limit N
becomes larger, but the translation operator TN becomes
sharper. Consequently, only a small subset of the tabulated
directions are necessary, and the rest can be discarded during
the translation stage. To allow for a larger value of ∆ whilst
not reducing the accuracy, N has to be increased relative to
the usual upper limit L chosen for the Rokhlin translator. Fur-
thermore, due to numerical concerns regarding cancellation,
there is an upper limit to how large the term ∆/|x| can be.



Thus, to apply the Gaussian translation operator, one needs
to choose allowed upper limits for N and ∆/|x|. Based on
this, a value of ∆ can be found by increasing ∆ until either
∆
|x| is greater than the limit, or until∣∣∣∣∣eik|re+x|/|re + x| −∑N

n=0 Un(k,x, b,∆)

eik|re+x|/|re + x|

∣∣∣∣∣ ≈ 10−β (8)

where b = re − i∆x̂, and Un is [5]

Un(k,x, b,∆) =ik(−1)n(2n+ 1) (9)

· h(1)
n (k[|x|+ i∆])jn(k

√
b · b)Pn

(
x̂ · b√
b · b

)
,

where jn is the spherical Bessel function. We set re = Da,
where D is the diameter of the groups interacting and a is an
otherwise arbitrary vector orthogonal to x. Through numerical
testing, we have found the upper limit on ∆

|x| to be 0.15. While
this will depend on the required accuracy, and the location of
sources inside the interacting groups [6], we have found 0.15
to be a reasonable rule of thumb.

III. IMPLEMENTATION DETAILS

Having found ∆ for each translator TN (k, k̂, rmm′ ,∆),
the translator is evaluated and only the tabulated plane-wave
directions k̂t for which

|TN (k, k̂t, rmm′ ,∆)| > max
k̂
|TN (k, k̂, rmm′ ,∆)| · 10−(β+2)

(10)
are included in the translation stage. Since the sharpness
of the translator is directly proportional to the value of ∆,
this demonstrates why increasing ∆ as much as possible is
desirable. Thus, there is a comprimise between increasing ∆
as much as possible, to increase computational speed, and
keeping N and thus KN = 2(N + 1)2 as low as possible, to
reduce memory costs for the group patterns. The number of
included plane-wave directions is labelled Q in the following.

We do not utilize the Gaussian translator if Q/KN > 0.8,
since there is some computational overhead involved in keep-
ing track of the directions to be skipped by the Gaussian
translator.

IV. NUMERICAL RESULTS

As a testcase, we consider the scattering from a 100λ square
PEC plate illuminated by a plane wave. The implementation
used is discussed in detail in [7]. We use N = L + 5 for all
levels save for the finest, and set β = 2. Comparing with the
usual Rokhlin translator, the results are shown in Figure 1,
while the key numbers for the translator are shown in Table I.

From the figure, we see that the resulting scattered fields
are effectively the same, with a relative deviation of less than
0.2%. The truly interesting factor, however, is the reduction
in computational time as seen in the table — the translation
time is reduced by almost 40%, which is very significant in
many implementations since the translation stage occupies a
significant portion of the time. Further, while the increased N
compared to L results in slightly larger memory requirements
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Fig. 1. Scattered co-polar fields in the E-plane calculated using TL and TN ,
respectively. The relative deviation is less than 0.2%.

TABLE I
SAVINGS IN COMPUTATIONAL TIME AND MEMORY OF THE GAUSSIAN

OPERATOR RELATIVE TO THE ROKHLIN OPERATOR.
Gaussian (TN ) relative to Rokhlin (TL)

Q/KN Time Group memory Translator memory
Level 3 0.23 0.55 1.03 0.23
Level 4 0.30 0.53 1.06 0.32
Level 5 0.40 0.79 1.12 0.45
Level 6 0.81 1.00 1.00 1.00

Total – 0.64 1.07 0.26

for the group patterns, the translators themselves require much
less memory. The latter feature is important for distributed
memory implementations, where the translators are often
replicated on each node to reduce inter-node communication.

V. CONCLUSION

The performance of a Gaussian translation operator, used
with an actual scatterer, has been presented for the first time,
demonstrating a significantly reduced matrix-vector product
time compared to the Rokhlin translator. The implementation
is fairly simple and only requires modifying the parts of the
code involved in translation. The potential for other MLFMM
implementations, such as distributed memory or on-the-fly
evaluation of translators, is obvious.
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