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Abstract—The challenges related to the increasing physical size
of satellite platforms carry over to a number of related areas,
including the design of Compact Antenna Test Ranges (CATRs)
capable of handling such structures. In the present paper, we
consider the design of a large CATR and use state-of-the-art
Computational Electromagnetics (CEM) software, based on full-
wave methods to fully include the important diffraction effects, to
perform various parameter studies and ultimately allow full-scale
optimization of a CATR.

I. INTRODUCTION

In recent years, the increased payload capabilities of modern
launchers have allowed satellites of unprecedented size. This
increased satellite size allows for much better performance
of the subsystems on the satellite, but proves to be quite a
challenge for some of the other processes in satellite design,
including manufacturing and testing.

This is particularly true when measuring the far-field be-
haviour of the antennas. While initial measurements may be
carried out using smaller ranges, later testing phases require
the full effects of the satellite platform and thus must be
performed in ranges with sufficently large quiet zones (QZs).

The design of ranges with such large QZs is a challenge.
Aside from significant manufacturing constraints, designing
such as system to provide strong QZ performance throughout
the frequency range is difficult. For high frequencies, the ex-
treme electrical size requires very long computation times even
when using asymptotic methods, while at lower frequencies,
the often complicated geometry means that full-wave solvers
have to be applied, resulting in high memory consumption.

In the present paper, we demonstrate how some of the
recent developments in CEM tools, implemented in the latest
version of TICRAs flagship product GRASP, allows significant
performance benefits to be obtained when designing a CATR.
The paper begins with a brief discussion of the analysis
methods involved, and how they are accelerated, and then
moves on to a description of the initial design of a CATR.
We then continue to improve the design by subjecting various
parameters to an optimization, and present our conclusions.

II. ANALYSIS METHODS

There are three main approaches for analysing CATRs,
depending on the required accuracy and electrical size of the
system.

A. Geometrical Optics
Geometrical Optics (GO), possibly including diffraction

by means of Uniform Theory of Diffraction (UTD), has
previously been a common analysis tool for CATR, partic-
ularly when applying optimization [1]. With the progress in
computing resources and CEM algorithms, it appears to be
used less frequently, at least for the later stages of the design
process. However, it still has several key features that justify
its use in CATR design:

• Strictly speaking, its time and memory requirements
are independent of the frequency. As such, for extreme
electrical sizes, it can be the only option.

• By disregarding UTD and only tracing reflected rays, GO
can allow users to gauge the ”ideal” performance of the
system, i.e. if no diffraction is present. This approach
has been used in the literature [2], and can allow more
efficient optimization by subtracting the feeds amplitude
taper from the quiet zone performance, isolating the
amplitude ripples due to diffraction.

B. Physical Optics/Physical Theory of Diffraction
A popular algorithm for the analysis of CATRs [3], and

reflectors in general, is Physical Optics (PO), combined with
Physical Theory of Diffraction (PTD). While still an asymp-
totic method, like GO/UTD, it is very accurate for large,
smooth structures. Unfortunately, it is typically much more
time-consuming than GO/UTD.

For Physical Optics on electrically large structures, GRASP
is recognized as an industry leading tool, due to its use of
customized sparse integration rules, which reduce the number
of samples of the integrand. This results in much faster
computation. However, the main caveat of PO remains: The
computational time generally scales as O(f4), where f is the
frequency, such that doubling the frequency means that the
computation takes 16 times longer. To reduce this scaling,
there has been a large effort in recent years to develop ac-
celerated algorithms, also called ”fast” algorithms, that reduce
the scaling of PO to O(f2 log f), similar to how the FFT
reduces the scaling of the discrete Fourier transform. While
some ”Fast-PO” algorithms were published in the last decade,
it was only recently [4] that algorithms were presented that
provided both sufficient speed-up and accuracy to allow their
use in the design of high-accuracy systems such as a modern
CATR. These algorithms have been implemented in GRASP
10.5.



TABLE I
PARAMETERS FOR THE CATR SETUP WITH INITIAL VALUES.

Feature Symbol Starting Value
Total footprint D 2S + L = 7.5m
Serration Length S 1m
Main reflector edge length L 5.5m
Number of serrations N 10
Serration Width L/N 0.55m
Frequency f 1.5GHz
Feed taper Ft −1 dB
Quiet zone diameter Q 4m
Quiet zone distance from vertex Qd 12m
Focal length F 10m

C. Method of Moments

Method of Moments (MoM) is a full-wave method, meaning
that it takes into account all physical phenomena. It works
by discretizing the surface of the object using geometrical
patches, and then represents the current on those patches
using polynomial vector basis functions. MoM is accurate;
the expected dynamic range of the implementation in GRASP
is about 60 dB for the default accuracy, and the accuracy can
be further improved if requested by the user. Since it takes
into account all phenomena, but requires O(f4) scaling of
memory and computational time, it is typically used only on
small-scale or simplified CATR models.

MoM can be accelerated by the Multi-Level Fast Multipole
Method (MLFMM), which has O(f2 log f) scaling. MLFMM
was implemented recently in GRASP, and was adapted to the
efficient Higher-Order (HO) basis functions used in GRASP,
which allow much lower memory requirements [5], [6] than
implementations based on the widely used Rao-Wilton-Glisson
(RWG) basis functions.

III. DESIGN

The initial design is a single-reflector CATR with a 4m
circular cylindrical quiet-zone. The footprint of the reflector
is fixed at 7.5-by-7.5 meter as the fundamental constraint of
the design. The frequency under consideration is 1.5GHz.
While we note that a compensated dual-reflector system is
often preferred for full spacecraft testing, due to stronger per-
formance characteristics, space considerations may not allow
for the design of such a large system and we therefore focus
on single-reflector systems. Further, recent scientific progress
[7] has allowed for much better performance of single reflector
CATR than was previously possible.

The basic design is illustrated in Fig. 1 and the key
parameters are shown in Table I.

A. Quality of QZ

Determining a quality estimate of a CATR design, needed
for optimization, is not straight-forward and indeed does not
have a unique answer. In the literature, it is most common
to find quality estimates based on the quiet-zone field. For
instance, one can perform a GO analysis (without diffraction,
i.e. a simple projection of the feed image into the quiet zone)
to find the taper of the feed in the QZ. Then, one can compute

Fig. 1. Starting configuration. Circular plate in quiet zone shown in green.

(by either PO/PTD or MoM/MLFMM) the scattered field E
from the CATR system in the QZ. The key performance metric
κ is then:

F = E −G, (1)
κ = max(10 log10(|F |))−min(10 log10(|F |)), (2)

where G is the GO field in the QZ. Thus, κ is the peak-to-
peak amplitude ripple in dB in the quiet-zone, after the feed
taper has been subtracted.

However, this approach completely disregards the amplitude
taper in the quiet-zone by subtracting it from the quality
estimate κ, since the peak-to-peak ripple would otherwise be
lost to the more significant amplitude taper. Furthermore, the
peak-to-peak ripple κ can be hard to translate into the quality
of the measured pattern one would achieve.

Instead, we apply the following approach, inspired by [8].
First, we place a circular plate of diameter 4m in the quiet-
zone, and compute an overdiscretized ”true” far-field from this
antenna as illuminated by a plane-wave. Then we compute the
coupling between the CATR and the antenna as we rotate the
antenna — by reciprocity, this yields the far-field pattern that
would be measured if that specific antenna were measured
using that specific CATR. We call this far-field pattern the
computed measured field. We can then compare these two
patterns by computing the Relative RMS Error, defined as

RelativeRMSError =

√√√√∑Ns

i=1 |Ei,true|2 − |Ei,calc|2∑Ns

i=1 |Ei,true|2
, (3)
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Fig. 2. True far-field (in red) from a circular plate placed in the quiet-zone
vs. the simulated measured far-field from both PO and MoM/MLFMM.

where Ei,true and Ei,calc denote the electric far field at the
ith sample point from the true and computed measured fields
respectively, and Ns is the number of samples.

In the measurement literature, this number is often ex-
pressed as the equivalent noise level:

% = 20 log10 (RelativeRMSError) (4)

For 1.5GHz, both PO/PTD and MoM/MLFMM are applica-
ble. As a starting point for the design process, we compute κ
using both methods:

κPO/PTD = 0.68 dB, (5)
κMoM = 0.71 dB. (6)

Again, while these numbers are useful in quantifying part of
the performance of a CATR, it is not suitable for use as an
optimization goal.

Further, we consider the Equivalent noise level achieved to
allow a comparison between the two quality estimates:

%PO/PTD = −56.63 dB, (7)
%MoM = −57.19 dB. (8)

The simulated measured cuts on which these % numbers are
based are shown in Fig. 2. We see a fairly good agreement
between PO/PTD and MoM/MLFMM, although some of the
secondary sidelobes vary somewhat. The large deviation that
both MoM/MLFMM and PO/PTD has from the true far-field
pattern at around θ = 17◦ is caused by the focus of the circular
plate pointing directly at the serrations, and thus getting the
maximum contribution from the diffractions.

IV. OPTIMIZATION

The optimization of CATR is a challenging problem, mainly
because of the long computation times (at least for full-wave

analysis) and the potential for local minima. This suggests
the use of specially tailored optimization algorithms that take
great care in reducing the number of function evaluations while
searching for global minima, typically known as ”Efficient
Global Optimization” algorithms [9]. A number of these algo-
rithms exist, and we provide an outline of our implementation
below:

1) Start: Choose a low number of points, called ’sites’, in
which to evaluate the RMS function.

2) Based on those sites, build a surrogate model using e.g.
Kriging [10], evaluate the model accuracy.

3) while (not accurate enough)
a) Find a region where the surrogate model should be

more accurate.
b) Add a site in that region to the surrogate model.
c) Reevaluate the accuracy of the model.

4) end while
5) Optimize the surrogate model using a global optimiza-

tion algorithm.
It is important to note that each of the points listed above

require careful consideration — everything from the choice of
the surrogate model, the evaluation of model accuracy, the
method of finding the best site to add to a model, and indeed
the choice of global optimization algorithm at the end, can be
adapted to suit the specific task at hand. For more details, we
refer to [11].

V. RESULTS

A. Serration length

With the starting point for the optimization described above,
we begin by performing a brief study of the length of the
serrations S. In Fig. 3, we vary the serration length between
0.4m and 1.8m, corresponding to 2λ − 9λ, in 16 discrete
steps. Further, we compute a Kriging surrogate model using
the DACE toolbox [12] based on 9 of the sites. As the
figure shows, the resulting surrogate model fits very well with
the true results. Moreover, the results indicate that the best
performance is achieved by having serrations of roughly 4λ-6λ
length, consistent with practical experience. Finally, the figure
shows that while PO can provide a reasonable approximation
for some cases, it is too inaccurate for the final stages of
optimization, with the minimum overestimating the optimal
serration length by about 1λ.

B. Feed taper

We now consider both the feed taper Ft at the edge of the
serrations as well as the serration length S simultaneously. By
computing a grid of 16 x 16 points, and using a 9 x 9 grid
of sites to construct a surrogate model, we can evaluate the
accuracy of the Efficient Global Optimization approach on a
2D problem, yielding a surrogate model with a Relative RMS
compared to the true grid of 3%.

The grid is seen in Fig. 4. We further apply a DACE model
to this, and then use Efficient Global Optimization to find the
minimum at S = 1.248, Ft = −1.67 dB yielding a Equivalent



0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

−58

−56

−54

−52

−50

−48

S [m]

%
[d

b]
Performance

MoM/MLFMM
PO/PTD
Surrogate

Fig. 3. Performance as function of serration length S.
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Fig. 4. Performance as function of both serration length S and feed taper
Ft.

noise level of % = −58.48 dB. The corresponding design is
shown in Fig. 5, and the resulting pattern is shown along with
the true pattern in Fig. 6.

C. Advanced optimization

We now consider a more complete scenario, fixing the feed
taper at Ft = −1.67 dB and focusing on the serration shape.
To improve the serration performance, we introduce a model
of the serrations with five variables, as shown in Fig. 7. We
also introduce a linear slant, such that the serrations at the
center of the rim edge are isosceles triangles, while at the
edges of the rim, they are right-angled. This should yield a
better performance based on theoretical studies [13].

Based on applying the Efficient Global Opti-
mization, we obtain the values [y1, y2, y3, y4, y5] =
[0.099, 0.635, 0.720, 0.994, 1.255], yielding a Equivalent

Fig. 5. Optimum configuration when optimizing for S and Ft. Circular plate
in quiet zone shown in green.
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Fig. 6. True vs. computed measured fields for the optimized S and Ft. While
the % is only about 1 dB better than the initial design, comparison with Fig. 2
shows a noticeable improvement on the first few sidelobes.
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Fig. 7. Model of serrations using five variables, y1, y2, y3, y4, y5, indicating
the height of the nodes relative to the reflector rim. The left side line is
then reflected across the center. While the points in this illustration lie on a
straight line, the points are connected by a spline to allow a curved edge of
the serrations.

Fig. 8. Optimum configuration when optimizing for the spline shape. Circular
reflector in quiet zone shown in green.

noise level of % = −63.82 dB from the design shown in
Fig. 8 and the results shown in Fig. 9.

VI. CONCLUSION

We have shown how recent progress in CEM algorithms
allow for full-wave analysis of real-size compact antenna test
ranges with very brief simulation times. This further opens up
the possibility for semi- or even fully automated optimization
approaches, potentially allowing for better CATRs at low
frequencies.
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Fig. 9. True vs. computed measured fields for the optimized serrations. The
% is about 6.5 dB better than the initial design. Comparing with Fig. 2 shows
a strong improvement.
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