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Abstract—In this paper, we apply a recently developed 3D
source reconstruction algorithm to perform antenna diagnostics
on a planar array configuration. The test case is a planar X-band
slot array measured in a spherical near-field facility and two slots
were intentionally covered during the measurement campaign
to test the performance of the algorithm. These measured data
have previously been analyzed in [1] using two different methods
for planar back-projection. For the purpose of comparison,
results obtained with a planar reconstruction method based on
conversion of spherical waves are also presented.

I. INTRODUCTION

Antenna Diagnostic procedures on planar arrays are typi-
cally performed by back-projection of the measured field onto
the antenna aperture. Several techniques have been proposed
for this purpose, including Fourier transform based techniques
[2], [1] and techniques based on conversion of spherical waves
to plane waves (SWE-to-PWE) [3]. These planar reconstruc-
tion techniques are computationally inexpensive and may be
applied to arbitrarily large planar arrays.

In the last decade, a new class of antenna diagnostics
algorithms has been introduced. These new methods are based
on discretization of integral equations [4]-[16], e.g., the source
reconstruction method (SRM) and the Inverse Method of
Moments (INV-MoM). The integral equations are derived by
placing unknown equivalent electric and magnetic currents on
a surface conformal to the antenna and requiring that the
currents radiate the measured field outside the surface and
zero field inside the surface. The last requirement is necessary
to ensure that the reconstructed currents correspond to the
physical fields one would actually measure on the surface of

reconstruction [5]. A discrete set of equations are obtained
by using a standard Method-of-Moments discretization, e.g.,
RWG functions on flat triangular facets [13], [14], or higher-
order basis functions on curved surfaces [15]. The latter choice
has been shown to provide better accuracy and lower memory
requirements [16]. A common property of these new methods
is that the field can be reconstructed on an arbitrary 3D
surface enclosing the antenna, which opens up a range of
new applications. The new applications include but is not
limited to artificial suppression of currents flowing on a part
of the enclosing surface, e.g., a cable or a support structure, as
well as pattern enhancement of noisy, truncated, or irregular
measurements.

The 3D source reconstruction allows reconstruction surfaces
of arbitrary shape and may therefore also be applied to
planar arrays, which facilitates a direct comparison between
the planar back-propagation techniques and the 3D source
reconstruction technique. In this paper, we apply the 3D source
reconstruction technique to an 18 inch flat plate slot array
operating at X-band. The array was measured in a spherical
near-field facility at MI Technologies and also using a large
spherical near-field arch. During the measurement campaign,
two of the radiating elements were covered with conduct-
ing tape for the purpose of testing the antenna diagnostics
algorithms. Planar back-projection of the measured field has
previously been reported in [1], where two different derivations
of the planar back-propagation algorithm were presented. For
the purpose of comparison the paper will also report the results
obtained with the SWE-to-PWE algorithm of [3].



II. 3D RECONSTRUCTION ALGORITHM

The 3D reconstruction algorithm is based on a higher-order
inverse Method of Moments (INV-MoM) [15], [17], and a brief
summary is presented below. On the reconstruction surface
S enclosing an antenna, the equivalent electric and magnetic
surface current densities are defined as

JS = n̂×H (1a)
MS = −n̂×E, (1b)

where n̂ is the outward normal unit vector, and E and
H are the fields just outside the surface of reconstruction.
These equivalent currents are those corresponding to Love’s
equivalence principle since they produce zero field inside S.
The measured field can be written as

Emeas(r) = −η0LJS +KMS (2)

where η0 is the free-space impedance and the integral opera-
tors L and K are defined as

LJS = jωµ0

[ ∫
S

JS(r′)G(r, r′) dS′

+
1

k20

∫
S

∇′S · JS(r′)∇G(r, r′) dS′
] (3a)

KMS =

∫
S

MS(r′)×∇G(r, r′) dS′, (3b)

where k0 is the free-space wavenumber and G(r, r′) is the
scalar Green’s function of free space. Equation (2) is referred
to as the data equation, since it relates the measured data
Emeas and the unknown surface current densities JS and MS .
Love’s equivalent currents in (1) are only obtained if the field
is explicitly forced to zero inside S [5], [14]. This leads to the
additional equation

−η0n̂× LJS +

(
n̂×K +

1

2

)
MS = 0, (4a)

−
(
n̂×K +

1

2

)
JS −

1

η0
n̂× LMS = 0 (4b)

for r ∈ S. These expressions are referred to as the boundary
condition equation.

The surface of reconstruction is discretized using curvilinear
patches of up to fourth order. The electric and magnetic surface
currents on each patch are expanded as

X =

Mu∑
m=0

Mv−1∑
n=0

aumnB
u
mn +

Mv∑
m=0

Mu−1∑
n=0

avmnB
v
mn (5)

where X = [J,M], aumn and avmn are unknown coefficients,
Mu and Mv are the expansion orders along the u- and v-
directions, and Bu

mn and Bv
mn are u- and v-directed higher-

order Legendre basis functions [18] defined as

Bu
mn(u, v) =

au
Js(u, v)

P̃m(u)Pn(v) , (6a)

Bv
mn(u, v) =

av
Js(u, v)

P̃m(v)Pn(u) . (6b)

Herein, au and av are the covariant unitary vectors and
Js(u, v) = |au × av| is the surface Jacobian. The current
expansion above is then inserted in the data equation (2)
and the boundary condition equation (4), and appropriate test
functions are then introduced in both equations [15]. This leads
to the coupled equations

Āx ≈ b and L̄x = 0, (7)

where x is a vector of unknown basis function coefficients,
b contains samples of the measured field, Ā is a matrix
with elements representing the field radiated by a particular
basis function observed at the measurement points, and L̄
is a matrix, whose elements represent the field radiated by
a particular basis function, weighted by a particular testing
function on S. These coupled equations are solved by the
iterative solution scheme described in [17], which allows us to
achieve an accurate solution by balancing the effects of noise
with the requirement of achieving Love’s currents. This setup
is advantageous compared to merely gathering the matrices Ā
and L̄ to yield the problem

min
x

∥∥∥∥[ĀL̄
]
x−

[
b
0

]∥∥∥∥
2

, (8)

as is done elsewhere in the litterature [5], [13], [14], since the
stacked matrix cannot adaptively weight the components, thus
lacking accuracy as well as the robustness needed to perform
well across a range of cases and noise levels.

III. RESULTS

The 3D reconstruction method presented above is appli-
cable to arbitrarily shaped closed surfaces. For the purpose
of comparison and cross-validation, the 3D reconstruction
algorithm is now applied to a planar array case, which is
ideally suited for existing back-projection techniques, e.g., the
two methods considered in [1] or the SWE-PWE algorithm
of [3]. The array considered here is the linearly polarized X-
band flat plate slot array shown in Figure 1. Two slots (shown
in red) have been intentionally covered by conducting tape
as indicated with the arrows. This array was measured in a
spherical near-field facility at MI Technologies and also using
a large spherical near-field arch, and the measurements have
previously been reported in [1]. The operating frequency of
the array is 9.375 MHz, the diameter of the array is 45.7 cm,
and the approximate slot spacing is 0.75 wavelengths. The data
were recorded on a partial sphere defined by θ < 80◦.



Fig. 1. X-band flat plate array. Two slots have been covered with conducting tape, as indicated by the arrows.

Fig. 2. Reconstructed co-polar field obtained with the 3D reconstruction method (INV-MoM). The field is reconstructed on a box. The plots show the field
on the top surface of the box, coinciding with the array aperture. Left: Amplitude. Right: Phase.

Fig. 3. Reconstructed co-polar field obtained with the planar reconstruction method (SWE-PWE). The field is reconstructed on the array aperture. Left:
Amplitude. Right: Phase.



The equivalent currents are reconstructed on a box using
the 3D reconstruction method outlined in the previous sec-
tion, which has been implemented in the software package
DIATOOL. The top surface of the box is 45.7 cm × 45.7
cm and coincides with the array aperture. The box is 2.0 cm
deep and a zero-field boundary condition is imposed on the
back, thus forcing both the equivalent electric and magnetic
currents to zero. The box is discretized using 510 patches with
an approximate side length of one wavelength and the total
number of unknowns is 17,040. The amplitude and phase of
the co-polar tangential electric field are shown in Figure 2
where the locations of the two covered slots are clearly seen.
In the region surrounding the slots, the amplitude distribution
exhibits a significant dip and the phase pattern shows a distinct
180 degree phase shift allowing a very easy identification of
the affected slots.

The SWE-PWE conversion method of [3] can also be
applied to the flat plate array considered above. The method in
principle allows evanescent waves to be included in the back-
projection but for the example considered here convergence is
only achieved in the visible region. The results are shown in
Figure 3 where the covered slots can easily be detected.

The reconstructed aperture fields shown in Figures 2 and 3,
as well as the results reported in [1], all agree very well. For
the present test case, it therefore appears that the 3D source
reconstruction method [15], the SWE-PWE method, and the
back-projection methods in [1] are all capable of extracting the
full information embedded in the measured field. However, for
smaller arrays the 3D source reconstruction method provides
higher accuracy than the planar reconstruction method, which
allows identification of the individual array elements in the
reconstructed aperture field.

IV. CONCLUSIONS

We have applied a recently developed 3D source reconstruc-
tion algorithm to reconstruct the aperture field of a flat plate
slot array operating at X-band. The reconstructed aperture field
was essentially identical to the aperture field obtained by a
SWE-PWE conversion procedure, and compared very well to
the back-projected aperture fields reported in [1]. The inves-
tigations presented in this paper show that both planar back-
projection and 3D source reconstruction are viable techniques
for performing antenna diagnostics on planar apertures. The
back-projection algorithms are superior in terms of memory
and CPU time but the 3D source reconstruction technique
provides higher accuracy on smaller arrays, which will be
demonstrated by numerical examples at the conference. In
addition, the 3D source reconstruction is applicable to non-
planar geometries and surfaces conformal to the antenna. This
latter property opens up a range of new applications, e.g.,
filtering of undesired currents flowing on cables or support
structures.
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