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The SNFGTD Method and Its Accuracy 

Abstract-The spherical near-field geometrical theory of  diffraction 
(SNFGTD) method  is  an extended aperture method by w?hich the near 
field from  an antenna is computed on a spherical surface enclosing the 
antenna using the geometrical theory of  diffraction.  The  far field is 
subsequently found by means of a spherical near-field to far-field 
transformation based on a spherical wave expansion of the near field. 
Due  to the properties of the SNF-transformation, the total far field may 
be obtained as  a  sum  of transformed contributions which facilitates 
analysis of collimated beams. It is demonstrated that the method 
possesses some advantages over traditional methods of pattern predic- 
tion, but also that the accuracy of the method is determined by the 
quasioptical methods used to calculate the near field. 

T 
I. IhTRODUCTION 

HE TWO CLASSICAL methods for the determination of 
fields radiated by reflector antennas, the current 

integration method (CIM) and the aperture integral method 
(AIM), are based  on the induction and equivalence theorems 
of electromagnetic theory, respectively. The two methods are 
illustrated in Fig. l(a). By the induction method, the scattered 
field E, is  found from the induced currents on the scatterer, 
here called the reflector, and the total field E is given by 

E= Ei+ E, 

where E; is the free space field from the primary field source. 
By the equivalence method, the radiated field E is found 

from the total tangential field Er on a closed surface, here 
called the extended aperture, enclosing the antenna com- 
pletely. In both cases, the resulting fields are expressed 
through complicated surface integrals; since these can always 
in principle be calculated, the original problems are reduced to 
the determination of the surface current distribution on  the 
reflector and the tangential field distribution on the aperture 
surface. It is worthwhile to note  that the above methods are 
exact  methods. This means that if the exact current distribution 
and the exact aperture distribution are known, the two methods 
yield the same exact result. 

In practical applications, the surfaces are usually chosen as 
shown in Fig. l(b). In the classical CIM, the integration is 
carried out  only over the illuminated part of the reflector. This 
is equivalent to assuming that the current on the back of the 
reflector is zero. Likewise, in the classical AIM, the field  is 
found from the tangential component of the scattered field, and 
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Fig. 1. Pattern predictions methods. The  current integration method (left), 
the aperture integral method (right). 

the integration is done over only that part of the extended 
aperture that caps the reflector. This is equivalent to assuming 
a  zero tangential component of the scattered field on the back 
of the reflector. Recently, 'it has been shown [ 11 that provided 
the exact current and aperture distributions are used, the two 
methods, also in this case, yield identical results. It  is 
interesting, however, that the field thus determined is not the 
exact field from the antenna since by both  methods  the 
contributions from the back side of the reflector are neglected. 

applications. In the CIM, the surface current is approximated 
by the physical optics current J = 2fi X H; and similarly, in 
the AIM, the aperture field is approximated by the geometri- 
cal optics field. In [l], it has also been  shown  that  the CIM 
with the physical optics (PO) approximation and the AIM with 
the geometrical optics approximation yield equal copolar 
fields within these approximations provided the aperture caps 
the reflector. Since this is the case in most practical 
applications, only the current integration method  with the 
physical optics approximation is considered. Furthermore, the 

In Fig. l(c) are shown the approximations used  in practical , 
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discussion  is  limited to directions close to the  main lobe (8 < 
18") where PO is known to yield accurate results [l]. 

II. THE SNFGTD METHOD 
A method  of exact analysis may be based  upon the surface 

integral equation formulation and the moment  method (") 
which  implies  a direct numerical determination of  the current 
distribution on the reflector. The moment  method in its 
various forms is known to yield  very  accurate  results  but  the 
applicability  of the method is limited by the fact  that the 
technique  involves  numerical  solution  of large systeins of 
linear equations, the size of which increases rapidly  with the 
reflector diameter. Thus moment  method  solutions  may  be 
used for purposes of comparison in special cases [7]  but the 
technique must  be excluded  as a practicable method for 
analysis of reflector antennas. 

An alternative method for accurate analysis may  be  based 
on the equivalence  theorem if the total  tangential  field  can  be 
obtained on the extended aperture. By the spherical near-field 
geometrical  theory of diffraction (SNFGTD) method, the total 
tangential field, using geometrical  theory of diffraction, is 
computed over a spherical surface referred to as the  near-field 
sphere  enclosing the antenna.  Subsequently  the far field is 
determined by  a spherical wave  expansion of the near field. 
The method  was originally used  by Jensen and  Larsen [2] and 
has been later described in [3]-[5], so only  a short review  will 
be presented here. Recently the method  has also been 
considered in  [6]  and  [7]. 

It  should be noted  that other extended aperture methods, 
related to the planar and cylindrical near-field  testing  tech- 
niques, are in use. In both  of these techniques, the  extended 
aperture surface, in contrast to the spherical case, extends to 
infinity, which  implies  that  the surface must  be  truncated prior 
to the  far-field transformation. This of course is  a source of 
errors. 

A .  The Near-Field Calculation 
The tangential components  of  the field on the near-field 

sphere may  be  conveniently obtained using  the geometrical 
theory  of diffraction (GTD) but  in principle; any  adequate 
method may, of course, be used. Thus the computation  of  the 
near field is  a standard task  since  well-known  and  well- 
established techniques reported  in  the open literature may be 
used.  Such calculations are given  in [IO]  and [ 111, for 
example. In the present paper, the uniform  asymptotic 
formulation  of the geometrical  theory of diffraction by 
Kouyoumjian is used  and  in particular, the diffraction coeffi- 
cients given  in [ 121. Also, the  theory  of slope difiaction as 
presented  in [ 131 and  the theory of equivalent currents given  in 
[ 141 are used. 

In Fig. 2 is shown a simple focused parabolic reflector 
antenna  and the near field sphere with radius ro centered at the 
focus of the antenna. Since the field is computed close to the 
antenna, only one reflected  ray  passes through any  field  point 
F such  that the geometrical optics caustic encountered in the 
main beam direction is avoided. In all cases presented  in  this 
paper  the  following contributions, as indicated in Fig. 2, are 
included: direct and  reflected rays, singly  and  doubly dif- 

Fig. 2. Parabolic reflector antennas with near-field  sphere. 

fracted rays from edges 1 and 2, slope diffraction contribution 
as well as a correction term for the caustic formed by the 
diffracted fields on the  axis of the antenna. Thus higher  order 
edge diffracted rays and all surface diffracted rays are 
neglected. This effect will be commented  on later in the paper. 

B. Spherical Near-Field to Fur-Field Transformation 
The  SNF-transformation  algorithm is  based  on the follow- 

ing formulas for a spherical vector wave expansion: 

B(8, a)= QsmnF;n(r=a, 8, a )  
s m n  

and 

Here Fmn denotes the spherical vector wave functions while 
B(8, 9) denotes the  wanted  far-field patterns and E(r0, 8, @) 
the  field  on the near-field sphere of radius ro. Due to the factor 
i in  the integrand of the expansion coefficients Qsmn, only  the 
tangential  field contributes to the integral. Furthemore,  as a 
matter  of curiosity, it may  be  noticed  that due to the factor sin 
8 in  the same integral, the on-axis near  field value  does not 
contribute to the far field. This illustrates the fact that the 
SNF-transformation  does not establish a  one-to-one corre- 
spondence  between  points  on  the near-field and the far-field 
spheres. 

The  reformulation of the above  formulas into discrete 
formulas which  may serve as the basis  of  efficient computer 
programs is described in [8], [91, and [ 151. The resulting 
formulas  are somewhat  complicated  and  will  not  be  repeated 
here  since for our  purpose it suffices to state that  they express 
the far field as a  complicated superposition of spherical wave 
functions.  We shall, however,  emphasize two  important 
properties of the transformation  formula, namely  that  the 
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formula is linear and that all summations in the formula are 
finite. This implies that the indices n and m are limited to 
maximum values nmax and mmax depending on the structure of 
the near field. As we shall show later, these properties may be 
utilized to provide new insight in the structure of collimated 
fields. 

Since the SNFGTD is not  based on the usual approximations 
mentioned  in the introduction, it offers a possibility of 
comparison of results in addition to the MM method also 
within the main  beam region. Furthermore, it  should be noted 
that the method yields the field from the antenna at  any 
distance and  in  any direction without  using different methods 
in various regions around the antenna. 

A large amount of analysis, including defocused  and offset 
reflector antennas, has  been carried out  but to keep the present 
paper concise, the subsequent discussion will  be  based on 
results obtained for a 20 h diameter, rotational symmetric, 
focused parabolic reflector antenna fed by either a Hertzian 
dipole or a Huygens source both polarized in the x-direction 
on the z-axis. These simple sources were chosen to avoid 
errors related to non-Maxwellian source-field functions, while 
the relatively small diameter was chosen to be able to produce 
an MM solution for reference purposes. The f / d  ratio of the 
antenna considered is 0.4 and the rim subtends a half-angle of 
64" when seen from the feed. This provides an edge taper of 
- 7.12 dJ3 in the E-plane of the dipole and - 2.86 dB for the 
Huygens source. For both configurations the E-plane field, 
the H-plane field and  the  maximum cross polar field were 
computed. Following Ludwig's third definition [16] the 
maximum cross polar radiation appears in the = 45" planes. 
The radius of the near-field sphere, which  was centered at the 
focus of the antenna, in  all cases was 16 X. 

III. THE SNF-TRANSFORMS 

The general relation between the far-field pattern E (0, 'P) 
and the near-field pattern En(ro, 0, a) on the near-field sphere 
may  in symbolic form be written 

E = SNF (E,) 

example, be expressed through 

E n  = E d i r  + Eref f Edif -k Esld  

where Edir is the direct field from the feed horn, Ercf the 
reflected field, Edif the diffracted field and Esld the slope 
diffracted field. Separate transformation of each individual 
field constituent then yields the result 

E= SNF (E,) = SNF (Edir) + SNF (E,,f) 

+ SNF (Edif) -k SNF (Esld) 

which shows that the far field may be obtained as the sum of 
the SNF-transforms of the near-field constituents correspond- 
ing to each individual ray system. It is important to note that  in 
this case the near field constituents are not bandlimited, since 
they possess strong discontinuities at the shadow boundaries of 
the various ray systems and thus do not represent physical 
fields. It turns out, however, that provided the same number of 
modes, nmax and mmax, necessary to represent the total field E,  
is also used  when transforming the various ray systems the 
dependence of the SNF-transforms on the radius of the near- 
field sphere is weak. Thus it is possible to associate a single 
SNF-transform with each ray system. 

In Fig. 3, the SNF-transforms of the direct, the reflected, 
the diffracted and the slope diffracted fields are shown 
together with the total far field for the two different excitations 
of the reflector antenna in question. For dipole excitation, it 
appears that the average sidelobe level is determined by the 
direct field while this is very low in the Huygens case. Apart 
from this, the sidelobes are determined by the reflected and the 
diffracted fields. For both excitations, the reflected field 
dominates over the diffracted field contributions in the near-in 
sidelobes while the roles are interchanged in the outer 
sidelobes. Slope diffraction contributes very little to the side- 
lobes, in particular in the H-plane where the edge taper is 
zero. The bottom plots show that the structure of the cross 
polar fields in the two cases is very different. Firstly, the level 
of the first cross polar lobe in the dipole case is determined 
solely by the reflected field while in the Huygens case, the 

where the operator SNF denotes the near-field to far-field 
transformation. As mentioned above, the SNF-transform is 
linear and bandlimited, i.e., all summations in the discrete 
transformation formula are finite. Thus, if the near field is 
divided into two arbitrary constituents E,  and E2, i.e., 

diffracted field yields a significant contribution to the cross 
polar level. In both cases, the diffracted fields dominate over 
the reflected field  in the outer lobes. It may be demonstrated 
that higher order diffracted fields do not contribute signifi- 
cantly to the field for which reason they have been neglected. 

It is a characteristic feature of the geometrical theory of 
E,= El + E 2  

then 

E=SNF  (E,)=SNF (E , )  +SNF (E2)  

which implies that the far-field pattern is the  sum  of the SNF 
transforms of the near-field constituents. When the field 
constituents El and E2 are physical fields which  may  be 
represented by the same number of  modes nmax, mmax as the 
original field E ,  the SNF-transforms of El and E2 are unique 
and thus independent of the radius of the near-field sphere. 

The above result may be applied to reflector antenna 
analysis since using GTD to compute the near field  it may, for 

diffraction that the total  field  is obtained as a sum  of  ray 
contributions which originate from specific, well defined, 
parts of the scatterer in question. This property of the GTD 
often leads to a better physical understanding of the scattering 
process under consideration. By the SNFGTD technique, the 
total  field is similarly obtained as a sum of transformed 
contributions which may be associated with specific, well 
defined, parts of the scattering structure so that the above 
mentioned feature of the GTD is retained even within the 
collimated region of the main  beam of the antenna. As seen 
from  the above example, this property of the SNFGTD- 
method  may  yield a deeper insight into the structure of 
collimated fields, a property which  will  be  used  in the 
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Fig. 3. SNF-transforms of direct  field (-), reflected field (---), diffracted  field (-*-) and slope diffracted  field (-. .-). The 
heavy solid line is the total  field.  Dipole excitation (left), Huygens excitation (right). 

following  discussion to assess the accuracy of the SNFGTD 
method. 

IV. COMPARISON OF RESULTS 

In this section the SNFGTD results for the above mentioned 
reflector antenna  are compared to physical optics solutions  and 
moment  method solutions. The PO computation  was  done 
using the general reflector antenna analysis and  synthesis 
program (GRASP) [17], while the MM solution  is  based  on a 

special  high accuracy moment  method program  version [ 181. 
Table I shows that the directivities computed by the three 
methods differ only by a few hundredths of a dB. Thus the 
comparisons shown  in the plot are absolute comparisons. 

In  the first case, Fig. 4(a), for dipole excitation it is  noted 
that  the H-plane  amplitude  and phase pattern are practically 
identical,  within the accuracy  of  the plots, for all three 
methods. This fact was reported  already in  [4]  and  repeated  in 
[7]. In the E-plane, a similar agreement is  obtained  except at, . 
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TABLE I 
DIRECTIVITIES IN dB FOR 20 REFLECTOR ANTENNA 

SNFGTD MM PO 
~~ 

Hertzian dipole 30.76 30.79 30.82 
Huygens source 33.81 33.87 33.79 

H-Plane 

-s 

Parabolic  Reflector Antenna 
D = 2OA. F/D = 0.4, Dipole Source 

- 4  i 

E-Plane 

1 -W 

Cmss Polar 

1 

Parabolic Reflector Antenna 
D = 20A. F/D = 0.4. Huygens Source 
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and close to, the minimum  next to the main  beam. Here the 
SNFGTD predicts a somewhat deeper minimum  than  the  two 
other methods, and  the SNFGTD  phase pattern also differs 
slightly  in  this region. The cross polar patterns agree well  but 
the deviations nevertheless are more significant, in particular 
close to the minima. However, it is seen that the same level of 
the first cross polar lobe is predicted by all three methods. 

In Fig. 4(b), similar computations  are presented for the 
Huygens source excitation. Also in this case the H-plane 
patterns are almost  identical for the three methods  although 
some  minor  deviations are seen. In the E-plane, again 
discrepancies are present close to the minima so the overall 
accuracy  has  been  reduced for both patterns. This fact 
becomes clear when the cross polar fields are considered since 
here the three methods differ considerably both  in  amplitude 
and  phase  such  that the level of the first cross polar lobe is now 
predicted differently by the three methods. The highest  level is 

, predicted by the SNFGTD and the lowest bjl PO while  in  the 
outer lobes  the SNFGTD and  MM results are in  good 
agreement. 

As mentioned above, the AIM is  in principle an exact 
method, so the observed differences between  the MM  and  the 
SNFGTD results  must originate from  errors in  the GTD 
near field on the spherical aperture surface. To investigate 
this, the MM solution was transformed  from the  far-field  to 
near-field sphere and compared with  the GTD  near field 
pattern. This  revealed that discrepancies occurred in  the 
regions close to the geometrical optics shadow  boundaries so 
the error in the cross polar level seemed to be  caused by 
inaccuracies in the difftaction coefficients used to calculate the 
field close to the shadow boundaries. To check  this  hypothe- 
sis, the GTD near-field data in the region close to the 
reflection  boundary were substituted by the corresponding 

’ MM data and the resulting “hybrid”  near field  was trans- 
formed to the far field. In Fig. 5 is  shown a  comparison 
between the hybrid GTD-MM  far field, the original far field 
and  the PO solution. It  appears  that an almost complete 
agreement between  the  hybrid data and the MM data is  now 
obtained  which confirms the above hypothesis. This is an 
interesting result since it explains why the SNFGTD results 
differ from the MM results mainly on the first cross polar 
lobe. In  the  main  beam direction, the contributing diffracted 
fields are radiated close to the reflection boundary  while  this  is 
not  the case in the sidelobe regions. 

V. CONCLUSION 

The  SNFGTD method has been  discussed  and  related to 
other pattern prediction methods for reflector antennas. It has 
been  demonstrated  that  by the SNFGTD  method, a deeper 
insight  into  the structure of  collimated  fields  may be obtained 
since  the  total field is obtained as .a sum  of transformed fields 
which  may  be  associated  with specific, well  defined parts of 
the  antenna  under consideration. Furthermore, it  has  been 
shown  that for the reflector antenna in question, the three 
methods, PO, MM, and SNFGTD yield  practically  identical 
results in  and close to the main  lobe as far as the  co-polar 
patterns are concerned while for the cross polar  components, 
certain discrepancies were  observed.  The discrepancies be- 
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Fig. 5. Comparison between hybrid SNFGTD-MM data (-), MM data 
(--) and PO  data (-.-.). 

tween the SNFGTD results and the MM results were  shown  to 
be  related  to inaccuracies in the field computations close to the 
shadow boundaries. It  should  be  noted  that the PO results 
which  may  not  be correct anywhere, even  within the main 
beam, probably  could  be improved  considerably by inclusion 
of  the fringe wave fields [19], [20]. 
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