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ABSTRACT 

A new antenna diagnostics technique based on the 
transformation of the spherical wave expansion 
(SWE) into the plane wave expansion (PWE) is 
proposed. The new technique allows the recovery of 
the plane wave spectrum in the visible region, and in 
principle also in part of the invisible region, from 
data acquired during a spherical near-field 
measurement. From the PWE the aperture field can 
subsequently be calculated. While the fundamental 
properties of the SWE-to-PWE transformation have 
been reported in previous articles, we concentrate 
here on the influence of non-ideal measurements 
aspects on this diagnostics technique. In order to 
isolate different measurement inaccuracies, the 
investigation is based on simulations. 

 
1. INTRODUCTION 

While the effect of electrical or mechanical errors in an 
antenna is observed in its measured far-field pattern, the 
errors themselves are more easily identified in the 
extreme near-field of the antenna. Several non-invasive 
diagnostics techniques have been proposed over the 
years [1]-[3], but generally these techniques possess 
limitations with respect to the type of antennas and 
antenna errors to which they apply, and/or to the 
accuracy they provide.  
We have proposed a new diagnostics technique [4]-[5] 
to be applied at the DTU-ESA Spherical Near-Field 
Antenna Test Facility located at the Technical 
University of Denmark [6]. The measurement technique 
employed at the DTU-ESA Facility is based on the 
SWE of the field radiated by the antenna. The SWE is 
valid outside the antenna minimum sphere and does not 
readily allow the calculation of the aperture field in the 
extreme near-field of the antenna. One way to overcome 
this is to transform the SWE of the radiated field into a 
PWE. The plane wave spectrum can be computed from 
the knowledge of the coefficients of the SWE, on any 
aperture plane in the extreme near-field outside the 
antenna. This technique gives two main advantages. The 
first is that the plane wave spectrum can in principle be 
evaluated also in part of the spectrally invisible region, 
and the second is that the aperture field can be 
computed as Inverse Fourier Transform (IFT) of this 

spectrum. Hence, the spatial resolution achieved in the 
aperture field can theoretically exceed the traditional 
limit of half a wavelength. While the fundamental 
properties of the SWE-to-PWE transformation have 
been described in previous articles [4]-[5], we will 
concentrate here on how non-ideal measurements 
aspects affect the diagnostics technique. To do that, we 
will consider an antenna model consisting of electric 
and magnetic Hertzian dipoles. Electrical measurements 
inaccuracies will be added to the calculated near-field. 
The effects of such quantities on the obtained Q 
coefficients, and on the extreme near-field provided by 
the diagnostics will be then studied. Finally, errors will 
be introduced in the antenna model and the ability of the 
diagnostics technique to identify these will be tested. 
All results are expressed in the S.I. rationalized system 
with the e-iωt time convention. 
  
2. THEORY OF THE SWE-TO-PWE 

TRANSFORMATION 

We begin by introducing the SWE of the electric field 
E radiated by an antenna circumscribed by a minimum 
sphere of radius ro [7], 
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where )3(
1mnQ and )3(

2mnQ are the expansion coefficients, 
obtained from a spherical near-field measurement, and 
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2 rF mn are the power-normalized 
spherical vector wave functions. The medium intrinsic 
admittance is η, k is the wave number, and r  is the 
position vector expressed in terms of spherical 
coordinates (r, θ, φ) or rectangular coordinates (x, y, z). 
In practice, the n-summation of the SWE is truncated at 
N=kro+10 since this is sufficient for an accurate 
calculation of the far-field. The PWE of the same 
electric field E in the spectral kxky-domain valid for z > 
zo, with zo being the largest z-coordinate of the antenna, 
is given by [8] 
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where kx and ky, are the spectral variables and 
222
yxz kkkk −−= . The spectral domain can be divided 

in two regions, the visible, for kx
2+ ky

2 ≤ k2, containing 
the propagating plane waves, and the invisible, for kx

2+ 
ky

2 > k2, containing the evanescent plane waves, see Fig. 
1. The two variables kx and ky  are always real, while kz is 
real in the visible region but purely imaginary with a 
positive imaginary part in the invisible region. In 
practice, the kx- and ky-integrals are truncated at finite 
values  ±kxmax and ±kymax respectively. At the border 
between the visible and invisible regions kz = 0 and the 
PWE generally possesses a singularity there [8]. 
 

                        
Figure 1. Visible and invisible regions of the spectral 
kxky-domain. 

The plane wave spectrum for a given z-coordinate is 
thus ( , ) zik z

x yT k k e . It was previously shown [4]-[5] and 
[9] how the SWE of Eq. 1 can be transformed into the 
PWE of Eq. 2, arriving at the following relation 
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where )( ŝÊ is given by  
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with ẑαŷβαx̂βαŝ cossinsincossin ++= , β∈[-π, π] and 
equal to )atan( xy k/k=β , α∈B see Fig. 2 and equal to 

)acos( k/kz=α , and )( βα ,Y m
n  being the vector 

spherical harmonics, see also [4]-[5]. 

                      
Figure 2. Domain of the variable α on contour B. 

The imaginary values of the angle α correspond to the 
invisible kxky-domain, and make the spherical 

harmonics )( βα ,Y m
n divergent in that region. Eq. 4 shows 

that the plane wave spectrum can be expressed as a 
series of spherical harmonics weighted by the Q 
coefficients of the SWE of the radiated field. But, while 
the visible region of the spectrum reaches convergence 
around N=kro, the invisible requires many more modes 
[5]. In practice the high order modes can not be 
measured due to the finite dynamic range. However, it 
has been shown [5] that the recovery with N ≈ kro terms 
of the visible region and the singularity for kz = 0 
provides accurate aperture fields. The spatial 
resolution )( yx ,δδ obtained in the aperture field is given 
by maxyymaxxx k/,k/ πδπδ ==  and can in principle be 
controlled by selecting kxmax and kymax appropriately in 
the SWE-to-PWE transformation. While in previous 
works [4]-[5] the investigations were based on ideal 
noise-free test cases, we will concentrate in the 
following on more realistic cases. 
 
3. SIMULATION MODEL FOR FINITE 

MEASUREMENT ACCURACY  

It is the purpose of this section to consider some of the 
most typical measurement electrical inaccuracies in 
order to clarify their influence on the proposed 
diagnostics technique. To do that, a Standard Gain Horn 
(SGH) model consisting of electric and magnetic 
Hertzian dipoles will be considered. Different 
measurement electrical errors will be added to its 
radiated near-field, and from that field distribution the Q 
coefficients will be computed. The aperture field will be 
then calculated by using Eqs. 2-3-4.  
 
3.1. Antenna Model 

The SGH model works at the frequency of 3GHz.  It 
represents a pyramidal horn with an aperture of a=4λ 
and b=3λ located on the xy-plane, see Fig. 3, and with 
the lengths of the flared section in the xz- and yz-planes 
being R2=R1=5λ. The dominant TE10 mode constitutes 
the co-polar component, it is y-polarized and excited 
with amplitude 1, while the TE01 mode provides a 
typical cross-polar component, it is x-polarized and has 
an amplitude of 10-2 and a phase of –iπ/4, see Fig. 3.  

                 
Figure 3. Aperture of the SGH model with the TE10 and 
TE01 modes, and the reference coordinate system. 
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From the equivalence theorem, the equivalent magnetic 
co-polar currents on the aperture of the SGH are 
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while the electrical are computed from the magnetic 
imposing a Huygens source dependence  
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with x∈[-a/2, a/2] and y∈[-b/2, b/2]. The cross-polar 
equivalent currents are computed in the same way and 
are equal to 
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with C=10-2exp(–iπ/4). The current distributions of Eqs. 
5-8, are sampled every λ/4 on the xy-plane to provide on 
the sampling points the excitation of a set of electric and 
magnetic Hertzian dipoles distributed on the aperture. 
From this dipole distribution the radiated field is 
computed and the directivity is plotted, see Fig. 4. It can 
be seen that the model represents a typical SGH pattern 
both in the co-polar as well as in the cross-polar 
components, computed according to Ludwig 3rd 
definition [7]. 

 
Figure 4. Directivity of the SGH model, co-polar 
(continuous lines), cross-polar (dashed lines). 

3.2. Measurement Electrical Inaccuracies Model 

Drift and noise, in amplitude and in phase, have been 
chosen to represent the most frequent and important 
measurement electrical inaccuracies. Their values are 
reported in Tab. 1, for a frequency of 3GHz and a scan 
speed of  3 deg/sec.  Drift during a spherical scan has 
been modelled as a linear function of the time t, drifterror 
= T/td ⋅ , with d being the value of the drift, see Tab. 1 
in amplitude or in phase, and T  the duration of a scan.   

 
Amplitude drift -0.015 dB 
Amplitude noise -60 dB 
Phase drift 0.25° 
Phase noise 0.15° 

Table 1. Values of measurement electrical inaccuracies. 

If XieXX ∠= is the θ- or φ-component of the electric 

field E on a sphere of radius of 10λ from the origin, 
then the field is equal to 

Xi
errortot edrift XX ∠+⋅= ) )1((  when affected by 

amplitude drift and to (1 )(  ) errori X drift 
totX X e ∠ +=  when 

affected by phase drift. Noise has been considered 
random and uniformly distributed providing 
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errortot enoise XX ∠+= ) (  for the amplitude noise 

and )( errornoiseXi
tot eXX +∠= for the phase noise. The Q 

coefficients have then been computed from the near-
field distribution with electrical inaccuracies by the 
software SNIFTD [10], and the power spectrum 
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1)(  has been found, see Fig. 5.  

 
Figure 5. SGH power spectrum for different electrical 
inaccuracies and for the ideal case.  

Fig. 5 shows that the major and most evident effect of 
the considered electrical inaccuracies is to truncate the 
available n-modes. It can be noted that numerical noise 
will anyway affect the computation, limiting the n-
modes to N=28=kro+13 for the ideal case. Since all 
types of measurement errors manifest themselves as a 
constant level of the spectrum after a certain mode 
number, it was decided to continue the investigation 
with the amplitude noise alone, and then investigate 
different values of this.  

3.3. Spectra and Near-Fields Results 

The plane wave spectrum is then computed by using 
Eqs. 3-4 with the Q coefficients obtained from the field 



 

distribution affected by an amplitude noise of -60 dB. 
The truncation in n is set equal to 18 and an aperture 
plane equal to z = 0.2λ is selected. A plot of the y- and z- 
components is reported in Fig. 6 in dB scale with the 
values normalized to Ty(0,0), and compared to the ones 
calculated through the ideal case with a truncation in n 
equal to 28. In both cases the visible region is 
recovered, and the singularity at kz = 0 is identified. The 
extra ten n-modes, provided by an improvement of 80 
dB in the dynamic range of the ideal case, allow the 
reconstruction of a small part of the invisible region, 
which is reduced for the noisy case. The spectrum in the 
invisible region is then replaced by zeros in the non-
converging region and inverse Fourier transformed, see 
Fig. 7. 

 

 

 

 

 
Figure 6. Amplitude of Ty and Tz on z=0.2λ, for a noise 
amplitude of -60dB and for the ideal case. 

For the data affected by amplitude noise the convergent 
region has a radius of 1.03k, while for the ideal case it is 
1.1k. Fields are in dB scale and normalized to the value 
of Ey(0,0) when affected by amplitude noise. They are 
compared to the components given by the ideal case, 
and to the ones provided by the superposition of the 
analytical dipole contribution. The results affected by 
amplitude noise are satisfactory and in good agreement 
with the ideal and the analytical ones, both for the y- as 
well as for the z-component. 

  

 



 

 

 

 

     
Figure 7. Amplitude of Ey and Ez on z=0.2λ, for a noise 
amplitude of -60dB, for the ideal case and for the 
analytical case. 

Very accurate results are provided by the ideal case, 
where the convergent region has a radius of 1.1k. We 
can again conclude that the recovery of the singularity 

for kz = 0 and of small part of the invisible region are 
important to reconstruct the aperture field. 
 
4. DIAGNOSTICS EXPERIMENT 

The TE20 mode is now introduced in the SGH aperture, 
to simulate an overmoding error, with an amplitude 
equal to 0.1 or 0.2. The presence of this error gives rise 
to an asymmetry both in the main lobe and the side–
lobes of the directivity pattern, see Fig. 8. For every 
TE20 amplitude case an amplitude noise varying 
between -70 dB and -50 dB is later added to the SGH 
near-field distribution on the spherical surface with 
radius 10λ from the origin. The Q coefficients are 
computed by SNIFTD [10] and the power spectrum is 
calculated, see Fig. 9. 

 
Figure 8. Directivity on φ=0 for the SGH with TE20 
amplitude equal to 0.2: co-polar (continuous line), 
cross-polar (dashed line), in blue the ideal case with no 
overmoding.  

 
Figure 9. Power spectrum for different values of noise 
amplitude: SGH with TE20 amplitude equal to 0.2. 

It can be seen that for a noise amplitude of -50 dB we 
have N=17 modes, and that a new mode is obtained 
every time the noise is decreased by -10 dB. The effect 
is the same whether the amplitude of the TE20 mode is 



 

0.1 or 0.2. The spectral components are then computed 
on the plane z = 0.2λ, with the N truncation values of 
Tab. 2.  For both amplitudes of the TE20 mode and for 
all noise amplitudes, the visible region of the plane 
wave spectrum reaches convergence and the singularity 
is identified. For all cases, the effect in Eq. 4 of an extra 
mode in n reflects into an enlargement of the convergent 
region of the invisible spectrum. For -50dB noise the 
reconstructed region has a radius of 1.02k which 
becomes 1.04k for -60dB and -70dB noise and 1.14k for 
the ideal case. 

-50 dB amplitude noise N=17 
-60 dB amplitude noise N=18 
-70 dB amplitude noise N=19 

Table 2. Truncation value N for different values of noise 
amplitude. 

The invisible region where convergence has not been 
reached is replaced by zeros and the spectral 
components are inverse Fourier transformed. Plots for 
the x- and y-components of the aperture field are shown 
in Fig. 10 for the TE20 amplitude equal to 0.2, in dB 
scale and normalized to Ey(0,0) when -50 dB noise is 
present. The aperture distribution is compared to the one 
provided by the ideal case with no noise and N=27, and 
to the analytical dipole distribution. Different colour 
scales are used for the x- and y-components to better 
visualize the amplitude variations. The asymmetry in 
the aperture distribution is clearly detected in both 
components, providing accurate results in comparison 
with the analytical ones. The importance of the 
detection of the singularity for kz = 0 is again noticed.  
To underline its importance for a diagnostics point of 
view, the radius of the converging region for -60dB 
noise is now selected first equal to 0.8k and then 0.95k, 
while the remaining spectrum is replaced by zeros. 

 

 

  

  

 

   
Figure 10. Amplitude of Ex and Ey on z=0.2λ for a TE20 
amplitude of 0.2. From the top: noise amplitude -50dB, 
-60dB and -70dB, ideal case, and analytical case. 
 
The spectra are inverse Fourier transformed on z = 0.2λ, 
and the results are shown in Fig. 11, for the x-
component. Even though an asymmetry is detected, the 
accuracy in respect of the ideal or the analytical case is 
very poor and not satisfactory. We can conclude that the 
singularity, well reconstructed by 17 modes, and a small 
part of the invisible region are important for an accurate 
diagnostics technique.  

 



 

 
     

Figure 11. Amplitude of Ex on z=0.2λ for a TE20 
amplitude of 0.2 and -60dB amplitude noise: region of 
radius 0.95k (above), region of radius 0.8k (below). 

To support that the aperture field obtained in Fig. 10 is 
the consequence of an overmoding error and not of a 
mechanical tilt of the SGH aperture, the phase of the y-
component is plotted, see Fig. 12. The symmetry of this 
on the xy-plane indicates that a tilt is not present. 

 
Figure 12. Phase of Ey on z=0.2λ for a TE20 amplitude 
of 0.2, -60dB amplitude noise and 1.04k convergent 
region. 

5. CONCLUSIONS 

The effects of finite measurement accuracy on the 
SWE-to-PWE diagnostics technique have been 
presented. It was found that among the numerous kinds 
of measurement electrical errors, the amplitude noise 
was the strongest and the most important. The effect of 
such a noise distribution generally reflects into a 
truncation of the available Q coefficients of the SWE of 
the field. It has been found that for a SGH the measured 
Q’s are anyway sufficient to reconstruct the visible 
region of the plane wave spectrum, the singularity for kz 
= 0, and a small circular region in the invisible region. 
This spectral distribution provides very accurate results 
in the computed aperture field. The effect of an 
overmoding error has also been studied. It has been 
found that an overmode of amplitude 0.1 and 0.2 can be 
detected and identified, in amplitude as well as in the 
phase, in the presence of typical measurement noise. 

Future investigations will concentrate on different 
antenna types with the purpose of identifying other 
antenna errors. 
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