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Abstract  

where  is the wavenumber  and r  the radius 
of the minimum sphere, i.e. the smallest sphere centred at 
the origin and completely enclosing all radiating and scat-
tering parts of the antenna. 

2 /k π λ= oSince the early days of spherical near-field far-field 
transformations a recommendation for the necessary 
number of polar modes has been given by 

,  being the wavenumber and r  the 
radius of the minimum sphere. The almost explosive 
development in computer speed and storage capacity 
witnessed during the last two decades has made trans-
formations of fields from antennas exceeding thou-
sands of wavelengths feasible, and a closer investiga-
tion of the above expression seems to be appropriate. 

10oN kr= + k o

In the early days of spherical near-field far-field trans-
formations [1,2] computer limitations made it unrealistic 
to handle antennas with a diameter exceeding . 
This led to n  in Eq. (1): 

100λ∼
1 10=

  (2) 10oN kr= +

An improved expression for the number of modes, N , 
related to the antenna size and the required accuracy 
will be developed. The impact of truncation of the 
modal expansion at a given level will be illustrated. 
This is especially important for measurements where 
noise is present, or where there is undesirable scatter-
ing from objects. 

which has been widely adopted since then. Present day 
computers do not impose this restriction on antenna size, 
and antennas exceeding 1000  in diameter may easily be 
treated. We therefore need to re-evaluate the estimate of 

. 

λ

1n

Turchin and Tseytlin [3] have stated that  

 31 ( on o kr= )  (3)  
but neither a justification nor a parametric expression 
have been presented. Keywords: Noise Filtering, Number of Modes, Spherical 

Expansion, Spherical Modes, Spherical Near Field, 
Spherical Waves  

2.  The spherical waves  

The electric field E
#$

 radiated from a source of limited 
extent can be expressed as a weighted sum of spherical 
waves (Hansen [4]), 

1.  Introduction 
The field from an antenna may be expressed as a 
weighted sum of spherical modes. With a sufficient num-
ber of modal coefficients the field may be accurately cal-
culated in all directions and at all distances greater than a 
mode-dependent minimum distance. 
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at a field point ( , . The field is fully characterised by 
the mo al coefficients Q  to the spherical wave func-
tions 

, )r θ φ

, )θ φ
smn

( ,smnF r
#$

. The order  is limited by m m n≤  
and the degree n  is limited by the extent of the sources 
given by . The index s  takes on the value 1 for TM 
fields and 2 for TE fields. 

N

The number of modes depends on the variations of the 
field in θ  and  (spherical angles of the field direction 
in standard spherical coordinates). Field variations in φ  
are limited by the order  and field variations in  are 
limited by the degree N . For the general case  
and the total number of modes is 

φ

M θ
=M N

( )2N N + 2 . For anten-
nas with some rotational symmetry around the -axis we 
may have M N . 

z
!

The spherical wave functions are power normalised such 
that the power of the radiated field given by Eq. (4) is 

An empirical value for  is  N
 21

2rad smn
smn

P Q= ∑   (watt). (5) 
   (1) 1oN kr n= +
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This expression may be rewritten as 

  (6) ( )
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Correspondingly, Figure 2 shows how the Hankel func-
tions for a fixed argument, kr , are small when the 
order, , is smaller than the argument, and increases 
drastically when the order exceeds the argument. 

30=

where P  is the power spectrum in  ( )n
rad n
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This is important for the expansion coefficients in Eq. (4). 
When the sources are bounded by a sphere of radius r , 
then the field is limited in amplitude outside this sphere, 
and all coefficients with n  must vanish in order to 
balance out the values of the Hankel functions which in-
creases so drastically with . This is the physical back-
ground for the existence of an upper limit, N , for 
the coefficients. 
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A similar power spectrum P  may be defined in m . ( )m
rad

For a truncation of the modes at N  it is of interest 
to know the amount of the truncated (i.e. excluded) power 
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Unless otherwise stated, the power content of the spectra 
presented here is normalised to P . 1rad =

The -dependence of the spherical wave functions is 
closely related to the spherical Hankel functions, h k . 
At large distances r , , the Hankel functions rep-
resent a radiating field: 

r
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while for small r , kr , it represents sources (the am-
plitude tends to infinity) cf. Figure 1, which shows the 
real and imaginary parts of the Hankel function . 
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Figure 2   Amplitude of h , n  in dB. (30)n 0,1, ,60= …

In order to obtain the required modal coefficients the field 
must be sampled with a spacing less than 180  in 
both  and φ . When M  the sampling in φ  may 
be increased to 180 . 

/N°
θ N<

M/°

If the field is not reconstructed from the spherical modes 
but from interpolation in the sampled values then the 
spacing must be at least four times denser in  as well as 
in φ . 

θ

 

3.  Expansion of the field of a Hertzian dipole 
A very simple field expansion is that of a z -directed 
Hertzian dipole at the origin of the coordinate system. 
The field f this dipole is expressed by only one wave 
function 

&

o
201( , , )F r θ φ
#$

. As the Hertzian dipole is infini-
tesimally small we have r  and N . 0o = 1=

 Figure 1   Real part (the Bessel function ) and 
imaginary part (the Neumann functiony ) of the 

Hankel functionh , linear scale. 
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3.1  The Hertzian dipole at  kro = 30 

 

If the Hertzian dipole is translated to the position 
 with r  (kr ) then the 

expansion involves at least the coefficients withn . 
( , , ) ( , 0,0)ox y z r= 4.77o λ= 30o =

30≤

The power spectrum for the translated dipole is shown in 
Figure 3 together with the truncated power, i.e. the power 
excluded when the mode series is truncated at the actual 

, cf. Eqs. (7) and (8). n

It is seen that the significant modes exist up to n  
but still a relative power about -15 dB is excluded if the 
mode series is truncated here. A more reasonable trunca-
tion is at N k  where the excluded power 
is reduced to -70 dB. 

okr=

10 40or= + =

Figure 4   The far field for θ  of the -directed 
dipole at kr . Top: ideal field and field based on 

 modes. Bottom: difference field with 41 lobes. 
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Rotating the dipole to a different orientation will not 
change the power spectrum significantly. 
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In measurements, noise will cause the power spectra to 
reach a floor given by the noise level. The modes shall 
then be truncated when the noise level is reached. Trunca-
tion ripples as described above can only be avoided by 
multiplying the coefficients related to the noise by suit-
able weights decaying with n [5]. 

 

3.3  The Hertzian dipole at kro up to 3000 
If we move the dipole further away from the centre of the 
expansion we get power spectra like that of Figure 3. In 
Figure 5 the spectra for z -directed dipoles at kr , 
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Figure 3   Power spectrum rad  and truncated power 
 for a z -directed Hertzian dipole atkr . 
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3.2  Truncating the mode series 
When the mode spectrum is truncated at a given N , then 
the difference between the ideal field and the truncated 
field expresses an error field which in measurements shall 
be less than the field of the measurement noise. 

It is characteristic for the truncated field � as well as for 
the error field � that it contains lobes with a lobe width of 

, cf. Figure 4, and that the level (here -60 
dBi) is closely related to the truncation level in the mode 
spectrum (-70 dB at ), cf. Figure 3. 

180 /( 1)N° +

40N =
Figure 5   Power spectrum rad  for Hertzian dipoles 

at different positions r . 
P
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60, 90 and 300 are shown, and in Figure 6 the power 
spectrum for a z -directed dipole at kr is given. & 3000=  10 log 3.3 log

300
okrA ≅−    or   
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 Figure 6   Part of the power spectrum P  for a 
Hertzian dipole atkr . 

rad
3000o = Figure 7   Part of the power spectra, scaled in n , for 

Hertzian dipoles at kr ,  and . The last 
case is inaccurate below -70 dB. 

30o = 300 3000
It is seen that all spectra have a maximum near n  
and that the maximum decays for increasingn . This ef-
fect is simply due to the spectra being normalised to a 
total power of 1 and for increasing kr  the power shall be 
distributed among an increasing number of modes. 

okr=

o

The spectrum in Figure 6 does not fall steeply for levels 
below -80 dB because the modes in that case were calcu-
lated from field values which were truncated to 8 digits. 

 

3.4  Scaled power spectra 
As seen the spectra of Section 3.3 are similar. In fact by 
scaling the spectrum for a given kr  in  to n , o n '

  (10) ' 300 ( )on n k− = − -10
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r A

and by adding the power dP  the spectrum will follow 
that of kr  in the important fall-off region for 

, as shown in Figure 7.  
300o =

ron k> Figure 8   Scaling factors for the power spectra. 

 The scaling factors A  and dP  have been determined for 
a set of kr -values by requiring the curves to coincide at 
-40 dB. The factors are seen to depend linearly on kr  in 
double logarithmic scales, cf. Figure 8. 

o
o

3.5  Number of modes versus truncated 
power 

We may thus state that the power spectra drop, say 60 dB, 
from n  by increasing  to kr  where  okr= n 1o n+

 31 24/ 3.6 on A= ≅ kr  (11) 

It is, however, not practical to evaluate the level of the 
spectrum at n  and instead we will consider the 
amount of truncated power P . Scaling of these func-
tions in n  turns out to give nearly identical curves, cf. 
Figure 9, though all curves are normalised to a total 

okr= ( )n
tr

applying Eq. (10) and A obtained from Figure 8: 



power of 0 dB (i.e. dP ). The curves accurately fol-
low the curve for the scaled power spectra (thin line). 
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Thus, if we want to exclude no more than the power frac-
tion  (in dB) of a mode spectrum for an elementary 
source at the distance r  from the centre of the expan-
sion, then we must include N k  modes where 

 may be read from Figure 9 and subsequently use Eq. 
(10): 

trP

1or n= +
1n

trP  -40 dB -60 dB -80 dB -120 dB 

1n  31.6 okr  o  33.6 okr  35.0 okr  

This may conveniently be approximated by (P  and  
in dB) 

or trP

 ( )
orN kr r P P= + − tr  (13) -60

in agreement with [3] and shown as the straight green line 
in Figure 9. 

o
 is the power of the source at  

relative to the total power. Here, in the dipole cases, 
 dB. 
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Figure 9   The truncated power P  scaled inn , for 
Hertzian dipoles atkr ,  and 30  and the 

power spectrum P  for . 
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3.6  Superposition 
The spherical wave expansion is a linear transformation 
and superposition therefore valid. Consider three dipoles 
at ,  and 14.32  

 excited by -0.31 dB, -10.31 dB and -20.31 dB, 
respectively (resulting in a total power 0 dB). The power 

spectrum, cf. Figure 10, is a weighted sum of the spectra 
of each dipole in Figure 5. 

4.77 (r kλ= =
( 90)=

4 ( 60)krλ = λ
kr

It is also seen how the truncated power for the two inner 
elements have vanished for . The truncated power 
for the three dipoles follows that of the outer element 
according to its excitation, 

o
P dB. Eq. (13) 

yields N  in agreement with Figure 10. 
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Figure 10   Truncated power P  and power spec-

trum P  for an array of three Hertzian dipoles com-
pared to those for the outmost dipole alone.  
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4.  Expanding the field of a reflector antenna 
The principle of superposition may be applied in general. 
As an example we consider an offset reflector antenna of 
radius ( ), cf. Figure 11. The field is 
sampled on a sphere centred at the reflector centre, O . 

14.3r λ= 90kr =

        
Figure 11   Off-set reflector antenna. 



The mode spectrum of the PO field is shown in Figure 13. 
Note that the mode power vanishes for  as all 
PO-sources are inside this radius. 

90kr >
The field is calculated by physical optics (PO). First we 
compute the currents induced by the feed on the reflector 
surface. These currents in turn generate the scattered PO 
field, to which the feed field (black and blue patterns, 
respectively) must be added in order to give the total field 
(green pattern), cf. Figure 12. 

For the total field, however, the modes contain significant 
power at larger n  and the pattern based on a mode set 
with N  is insufficient to describe the far-out lobes 
(red curve in Figure 12). This is due to the feed being at 

 requiring N k . The mode spec-
trum up to  is also shown in Figure 13 and the 
corresponding total field is shown in Figure 12 (green 
curve).  

120=

47.7λ
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or = 300or> =
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It is seen that it is important to include all sources (here 
the feed) when the radius of the minimum sphere is de-
termined. This is of significant importance in measure-
ments where scattering in the supporting structure may 
contribute to the measured field. An example of the influ-
ence of an absorber covering the back mounting of a low-
gain antenna is given in [5]. 

 

5.  Conclusion 
An improved expression for the number of polar modes 
required for a spherical expansion of the field of sources 
located inside the minimum sphere of radius r  has been 
derived. The expression is valid for all types of finite 
sources and determines the maximum spacing for sam-
pling the field. 

o

The impact of truncation of the modal expansion at a 
given level has been illustrated. This is particularly im-
portant for measurements where noise is present, or 
where there is undesirable scattering from objects. 

Figure 12   Patterns of the off-set reflector antenna. 
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Figure 13   Mode spectra of the reflector antenna and 
of the reflector PO field alone. 


