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Abstract: A comparison of the Fast Fourier Transform (FFT) and direct numerical
integration to solve the PO integral is presented, with special emphasis on the achieved
accuracy and the CPU time consumption. The concept of second order FFT is introduced. It is
shown that the accuracy of FFT is not compatible with the accuracy requirements expected by
analysis codes for satellite communication antennas.

Introduction
The FFT method has often been proposed to solve the PO integral in a fast and
accurate way, as an alternative to the straightforward numerical integration of the
induced currents on a reflector surface. The method has received particular attention
in the design of shaped reflectors for contoured beams, since in this case the
radiation from the antenna must be calculated repeatedly at many far-field points as
part of an iterative optimization scheme [1]. Because the PO integral cannot be
formulated directly as a Fourier integral it is necessary to introduce approximations
which affect the accuracy of the calculated field. The impact of these approximations
has been studied, and is viewed in relation to an accuracy requirement of ±1 dB at a
level 40 dB below the antenna peak gain in the following.

FFT approximation of the PO integral
If we suppress the factor � � 1jkre kr �� , the PO far field can be written as
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where 2 2 21w u v� � �  and the subscript 'tan' denotes the tangential component.
The integral contains the factor jkzwe  which is incompatible with the FFT, where the

integrand must be of the form � � ( ), jk xu yvA x y e � . To bring the integral into the

required form the exponent is rearranged as
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The Taylor series is valid for a narrow beam where cos 1w ��  . The far field can
thus be calculated as a series of FFT's:
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The first integral is what is normally included in the FFT evaluation of the PO
integral whereas the second term, the inclusion of which we will refer to as second
order FFT, has been described in the literature as part of the Jacobi-Bessel
approach [2].



It can be shown that the FFT approximation can be further improved by using a
tilted aperture plane (which contains the edge of the reflector) as support for the FFT
rather than the projected aperture plane orthogonal to the boresight direction [3].
This will further be addressed in the test example.

FFT input and output points
In FFT the input and output points must be arranged in regular rectangular grids. A
rectangular grid of integration points on the reflector aperture does not fit very well
to a circular aperture which means that the density of points must be higher than for
standard Gaussian integration in a polar grid. For reflector shaping the desired
output points are typically a number of irregularly distributed points so that the far
field in these points must be found by interpolation in the regular FFT output grid in
the uv-plane. We will consider two types of interpolation.

The first type is cubic interpolation. For cubic interpolation the necessary spacing of
the output points is λ/(4D) which means that the side length of the integration
rectangle should be increased to 4D with zeroes assigned to the integration points
outside the reflector. In order not to decrease the accuracy, the number of integration
points along each side must be increased from N to 4N. This, of course, leads to a
very significant increase of the computation time and memory requirements.

The second type uses Whittaker interpolation. This interpolation technique requires
only a slight over-sampling by increasing the side length of the integration rectangle
and the number of points by a factor of 1.2. However, the interpolation involves the
computation of a number of trigonometric functions which are more time consuming
to calculate than rational functions. It has been found advantageous first to use
Whittaker interpolation to compute the field in a grid 4 times denser than the
original FFT output grid and then compute the field at the irregular far-field points
by cubic interpolation. Hence the second type is referred to as Whittaker-cubic
interpolation.

Test example
As a representative test example a typical Intelsat
antenna has been chosen. The antenna is a shaped
single reflector antenna with circular aperture. The
antenna has a focal length of 3.3 m, a diameter of 3.3 m,
an offset distance of 1.85 m and is operated at 4.0 GHz.
The hemi-beam coverage areas are shown in the figure
to the right where the antenna radiation is maximised
in the eastern hemi beam while the side-lobes are
suppressed in the western hemi beam.

A reference result has been computed for the exact integral (1) with a fine Gaussian
integration grid such that the absolute accuracy in each of the output stations is
better than 10-4.

In order to judge the accuracy of the FFT field calculation we will consider the
accuracy required by Intelsat which is a maximum error of 1 dB at a field level 40 dB
below the peak level. This is translated into a difference between the amplitude of
the computed value and the amplitude of the reference solution of approximately
-58.8 dB relative to the peak level of the reference solution.



Accuracy :
The impact of the approximations made to bring the PO integral into the FFT form
on the achieved accuracy is assessed below. The 1.–order (4) and the 2.–order (4)+(5)
approximations of the PO integral (1) are calculated and compared to the reference
solution. Results are obtained with and without the use of the tilted aperture
approach [3].

Without tilted aperture Tilted aperture
1.–order 2.–order 1.–order 2.–order

Eastern cov. alone -29.32 dB -39.99 dB -39.61 dB -54.93 dB
Both coverages -29.32 dB -36.90 dB -39.61 dB -53.23 dB

We conclude that the accuracy of FFT will be rather poor unless the 2.–order term is
included and the aperture plane is tilted. The accuracy will then be sufficient for
many applications although the Intelsat criterion is not met.

Computation time for FFT:
Next, the computation time is considered. For the FFT results, the 2.–order
approximation and the tilted aperture approach are used (the tilted aperture plane
approach gives no penalty with respect to computation time whereas the 2.–order
FFT will double the computation time compared to the 1.–order FFT). Calculations
have been performed for an increasing number of integration points, and for each
calculation we plot the accuracy obtained as a function of the computation time.

As shown in Figure 1(a), the computation time to reach a specific accuracy of the FFT
can be significantly reduced by modifying the samples of the surface currents close to
the reflector rim. The FFT method implicitly weights all samples inside the rim by
the area ∆x∆y of a 'unit cell' of the FFT grid and samples outside the rim by zero.
Instead, for samples close to the reflector rim we define the weight factor as the
actual area of the unit cell inside the rim.

Also it has been found that a given accuracy level is reached faster using the
Whittaker-cubic interpolation than using standard cubic interpolation, c.f. Figure
1(b).
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Figure 1: Influence on computation time of the modified samples of the

surface currents and of the interpolation.

Gaussian integration versus FFT
Finally, in Figure 2, the Gaussian integration and the FFT method are compared. In
the FFT computations, the tilted aperture, the modified samples and the Whittaker-
cubic interpolation are used.
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Figure 2: Accuracy vs. computation time for the Gaussian and FFT methods.

Conclusions
The study has shown that in order to meet standard accuracy requirements for
spacecraft antenna analysis it is necessary to use at least 2.–order FFT as alternative
to Gaussian integration. This in turn means that the time-saving by using FFT
becomes smaller than usually obtained.

It is emphasised that the computation times shown in the paper are only for the
calculation of the PO integral and do not involve the time for the calculation of the
PO currents. If the incident field calculation is time-consuming, e.g. the field from a
subreflector, the Gaussian integration has an important advantage as it needs fewer
integration points than FFT. For the example considered the Gaussian integration
needs 4.5 times fewer integration points than the FFT on the reflector surface.

Also, in reflector shaping it is necessary to compute gradients of the far field with
respect to the surface variables. By using a spline representation of the surface and
Gaussian integration this can be done very conveniently by only repeating the
integration over the local support of the corresponding B-spline function, leading to a
significant time saving. With FFT this time saving is not possible.

Consequently, we conclude that the FFT does not have an advantage compared to the
direct numerical integration for the present purpose.

The study also revealed that the computation time to reach a specific accuracy of the
FFT can be significantly reduced by modifying the samples of the surface currents
close to the rim. Furthermore, it was found that FFT combined with Whittaker-cubic
interpolation is faster than FFT combined with the standard cubic interpolation.

For a larger antenna, measured in wavelengths, the conclusions reached above may
be different. Here FFT will probably be even faster than Gaussian integration, but on
the other hand the phase approximation used by FFT becomes more crude resulting
in a less accurate far field.
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