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ABSTRACT 

A stand-alone commercial program, performing 

advanced electromagnetic processing of measured 

data, is being developed by TICRA.  The program 

reads the measured field and computes the extreme 

near field or the currents on the antenna surface. 

From the inspection of the extreme near field or 

currents, the program will solve typical antenna 

diagnostics problems, such as identification of array 

element failure and antenna surface errors, but also 

allow artificial removal of undesired contributions, 

such as currents on cables and fixtures, thereby saving 

valuable time and resources in the antenna design and 

validation process. The program will be based on two 

field reconstruction techniques, the SWE-PWE 

presented at AMTA in 2007, and a new and more 

accurate inverse higher-order Method of Moments 

(INV-MoM). The paper will illustrate the theory 

behind the two techniques and present numerical cases 

with simulated data. 
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1.  Introduction 

The interest in techniques able to identify electrical and 

mechanical errors affecting an antenna under test (AUT) 

only on the basis of the radiated field has grown 

extensively in the latest years. Numerous groups in 

Europe and US have developed algorithms, generally 

identified by the common name of antenna diagnostics 

techniques,  to reach this purpose, see for example [1]-[3] 

and [8]-[11].  

The works presented in [1]-[2] are based on the well-

established relation between the visible region of the 

plane wave spectrum and the antenna far-field pattern [4]. 

Through the inverse Fourier transform of the plane wave 

spectrum the antenna extreme near-field is obtained. The 

technique, often called backward transformation, is 

applicable to general antennas and is simple and 

computationally efficient due to the use of the inverse fast 

Fourier transform. The major drawback of the backward 

transformation is that the invisible region of the plane-

wave spectrum is neglected. This results in inaccurate 

extreme near fields, especially for low directivity 

antennas, and in a spatial resolution of the extreme near 

field limited to half a wavelength.  

The inverse Method of Moment technique [8]-[11] allows 

reconstruction of the equivalent currents on an arbitrary 

surface enclosing the AUT based on full-sphere or 

truncated measured fields. The technique is normally 

more computationally demanding than the backward 

transformation and therefore only applicable to small and 

medium sized antennas. The accuracy of the INV-MoM 

technique strongly depends on the choice of geometrical 

discretization, the choice of basis functions used in the 

MoM, and the chosen regularization scheme.  

It is seen that the proposed antenna diagnostics techniques 

generally are well suited to certain types of problems but 

less suitable for others. Furthermore, some are limited in 

the accuracy that they can provide either because of the 

algorithm or the antenna measurement techniques on 

which they are based. Moreover, all the existing 

techniques are not available as a self-contained software 

program: some are meant to be embedded in a specific 

measurement system, while some are only used by 

universities.  

The purpose of this work is to develop a general, accurate 

and efficient stand-alone commercial program for antenna 

diagnostics that can be applied to small as well as large 

antennas, providing an accuracy of the reconstructed field 

and currents higher than that of the traditional techniques. 

The program will be based on two different 

electromagnetic models for antenna diagnostics. The first 

one is the so-called SWE-PWE technique, presented at 

AMTA in 2007 and fully described in [5], which 

computes from full-sphere measurements a plane-wave 

expansion of the radiated field in both the visible and 

invisible region of the spectral domain. From the plane 



wave spectrum the near field can be reconstructed on a 

plane in the immediate vicinity of the AUT, in a fast and 

efficient way with a spatial resolution that is better than 

half a wavelength. The second one is an improved inverse 

Method of Moments algorithm based on higher-order 

basis functions and curved geometry modeling, combined 

with a newly developed regularization scheme. This 

method also provides a spatial resolution better than half a 

wavelength but the memory requirement grows rapidly 

with the electrical size of the antenna. 

The paper is organized as follows: In Section 2 the theory 

behind the SWE-PWE technique is briefly summarized, 

while Section 3 deals with the theoretical foundation of 

the new INV-MoM algorithm. In particular, Section 3.1 

focuses on discretization, Section 3.2 on regularization, 

and Section 3.3 on the obtainable resolution. A summary 

is finally given in Section 4. 

2.  The SWE-PWE Technique 

The SWE-PWE technique is based on the transformation 

of the spherical wave expansion (SWE) to the plane-wave 

expansion (PWE). In practice, the SWE is generally 

obtained from a full sphere measurement of the radiated 

field. The SWE of the electric fieldE radiated by an 

antenna circumscribed by a minimum sphere of radius ro, 

and valid for r > ro is given by [6],  
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where ( )3
1Q mn  and ( )3

2Q mn are the expansion coefficients and 

( ) ( )3
1F rmn  and ( ) ( )3

2F rmn are the power-normalized spherical 

vector wave functions. The medium intrinsic admittance is 

η, k is the wave number, and r  is the position vector. In 

practice, the n-summation of the SWE is typically 

truncated at N = kro+10 since this is sufficient for an 

accurate calculation of the far-field. The PWE of the same 

electric field E valid for z > zo, with zo being the largest 

z-coordinate of the source, is given by [7], 
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where kx,ky are the spectral variables and 

2 2 2k k k kz x y   . The plane-wave spectrum for a given z-

coordinate is ( , , ) ( , ) zik z
x y x yT k k z T k k e . The spectral 

domain is divided into two regions, the visible region, 

for 2 2 2  k k kx y  , which contains the propagating plane 

waves, and the invisible region, for 2 2 2 k k kx y  , 

which contains the evanescent plane waves, see Fig. 1. 

The two variables kx and ky are real, while kz is real in 

the visible region but purely imaginary with a positive 

imaginary part in the invisible region. In practice, the kx- 

and ky-integrals are truncated at finite values ±kxmax and 

±kymax respectively, providing a spatial resolution 

( ),x y in the aperture field equal to 

/ , /
xmax ymaxx y
k k     . At the border between the 

visible and invisible regions kz = 0 and the PWE generally 

possesses a singularity [7].      

                                                                                                                                                                               

Figure 1- Visible and invisible regions of the spectral 

kxky-domain (to the left), and contour B of the variable 

α (to the right). 

It can be shown [5] that the SWE of Eq. (1) can be 

rigorously transformed into the PWE of Eq. (2), allowing 

the plane-wave spectrum ( , , )x yT k k z to be written as 
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with ˆ ˆ ˆ ˆ/ ( )/x y zk k k k x k y k z k    . The function 

( ),m
n
Y    is the vector spherical harmonics [5], αB, see 

Fig. 1, and is equal to acos( )/
z
k k , while 

 - ,   and is equal to atan( )/k ky x  . Equation (3) 

shows that the plane-wave spectrum on any z-plane z > zo 

can be expressed in both the visible and invisible region 
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as a series of the same type and with the same Q 

coefficients of the SWE of Eq. (1), where the only 

difference lies in the basis functions that are now the 

vector spherical harmonics instead of the power-

normalized spherical vector wave functions. The 

imaginary values of the angle α correspond to the 

invisible region of the kxky-domain. The fundamental 

properties of the SWE-PWE transformation are described 

in [5], together with their theoretical as well as practical 

implications for antenna diagnostics applications. Here it 

is just recalled that the infinite series of Eq. (3) can be 

truncated at a finite value N. However, while the 

traditional N=kro+10 is sufficient to reach convergence in 

the visible region of the spectrum, a larger N, and thus 

high order modes with small values, is necessary to reach 

convergence in the invisible region, due to the exponential 

growth of the spherical harmonics in this domain [5]. An 

example of this behavior can be seen in Fig. 3, showing 

the plane wave spectrum T  at z=0.2λ computed by Eq. 

(3) with different truncation values N, for the five 

Hertzian dipoles depicted in Fig. 2. 

 

Figure 2- Five x-oriented Hertzian dipoles displaced 

on the xy-plane, and the minimum sphere with radius 

ro.  

It is seen that the plane wave spectrum can be correctly 

reconstructed up to [-1.8k, 1.8k] in the kxky-domain, if 

N=kro+40=52. This means that a large part of the 

invisible region is known, and thus the obtainable spatial 

resolution in the extreme near-field is larger than the 

traditional half a wavelength and equal to λ/3.6. 

In practice, the finite dynamic range of the measurement 

system limits in general the measurement of the high order 

modes and thus the spectral domain where the series of 

Eq. (3) reaches convergence. However, it was shown [5] 

that for a SGH under typical measurement conditions 

(SNR=60 dB), the available Q coefficients were sufficient 

to reconstruct the visible region of the plane wave 

spectrum, the border for kz=0, and a small part of the 

invisible region, providing accurate results in the 

computed aperture field, see Fig. 4. 

 

Figure 3- Amplitude of the x-component of the plane 

wave spectrum of the dipoles of Fig. 2, on z=0.2λ: first 

the reference Tx, then the result of Eq. (3) with 

N=kro=12, N=kro+10=22 and finally N=kro+40=52. 

      

 

Figure 4- On top: Amplitude of the y-component of the 

spectrum T  computed by Eq. (3) on z=0.2λ with 

N=kro+3 and 60 dB noise. At the bottom: Amplitude of 

the corresponding y-component of the field E on the 

same z-plane and comparison with the analytical field. 

The white line indicates the physical aperture of the 

SGH. 



3.  The INV-MoM Technique 

The INV-MoM technique solves the inverse source 

problem in which the tangential electric and magnetic 

fields on a reconstruction surface S enclosing the AUT are 

reconstructed from fields measured at points outside the 

surface. On the reconstruction surface, the equivalent 

electric and magnetic surface current densities to be 

reconstructed are  

 ˆJ n HS  (6) 

 ˆM n ES  (7) 

where E and H are the fields just outside the surface of 

reconstruction. These equivalent currents are those 

corresponding to Love’s equivalence principle since they 

produce zero field inside S. They also correspond to the 

physical fields one would actually measure on S. 

The measured field can be written as  

    0( )meas
S SE r J ML K  (8) 

where 



0 is the free-space impedance and the integral 

operators L and K are defined as  
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where 0k  is the free-space wavenumber and the scalar 

Green’s function ( , ')G r r  is  
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Equation (8) is referred to as the data equation, since it 

relates the measured data measE and the unknown surface 

current densitiesJS andMS . This inverse problem has 

been formulated previously by several authors, including 

[8]-[9]. Love’s equivalent currents in Eqs. (6)-(7) 

constitute just one set of possible equivalent currents that 

radiate exactly the same field measE  outside the 

reconstruction surface, but different fields 
1E


, 
1H


 inside. 

The data equation is thus non-unique and the desired 

physical current densities in Eqs. (6)-(7), corresponding to 

Love’s equivalence principle, can only be obtained if 

additional a priori information is imposed. This fact was 

first noted by Persson et al. [10] and a more detailed 

treatment was presented by Araque Quijano and Vecchi 

[11]. The desired currents in Eqs. (6)-(7) are obtained by 

enforcing the a priori information that the fields 
1E


, 
1H


 

radiated by ( , )S SJ M  inside S must be zero [10], [11]. The 

formulation of the required boundary condition for the 

electric and magnetic fields requires extraction of a 

principal value contribution arising when Sr 


 in Eqs. 

(9)-(10), with the result 
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for r S . The expressions of Eqs. (12)-(13) are referred 

to as the boundary condition equations.  

3.1 Discretization 

The surface of reconstruction is discretized using curved 

patches of up to fourth order.  The electric and magnetic 

surface currents on each patch are expanded as  
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where ,X J M , uamn  and vamn  are unknown 

coefficients, uM and vM  are the expansion orders along 

the u- and v-directions, and uBmn  and vBmn  are u- and v-

directed vector basis function defined as  

 ( , ) ( ) ( )
( , )
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 (15) 

 ( , ) ( ) ( )
( , )

av vB u v P v P umn m nu vJS
 (16) 

Herein, au and av  are the covariant unitary vectors and  

( , )u v a au vSJ  is the surface Jacobian. In Eqs. (15)-

(16) the polynomials ( )P vn  along the direction transverse 

to the current flow are chosen to be Legendre polynomials 

due to their nice orthogonality properties. In the direction 

along the current flow, Legendre polynomials are not 

appropriate since they would not allow the normal current 

continuity to be enforced. Instead, the modified Legendre 

polynomials [12] are used. The current expansion above 

is then inserted in the data equation of Eq. (8). In order to 

arrive at a matrix equation, we choose two orthogonal test 

vectors ˆ ˆ( , )  at each field sampling point. This readily 

leads to the matrix equation  

 Ax b  (17) 



where x  is a vector of unknown basis function 

coefficients, b contains ˆ- and ˆ -components of the 

measured field, and A  is an M × N matrix with elements 

representing the ˆ- and ˆ -components of the field 

radiated by a particular basis function. The current 

expansion is also inserted in the boundary condition of 

Eqs. (12)-(13). In order to arrive at a matrix equation, we 

choose the testing functions  

 ( , ) ( ) ( )u uT u v a P u P vmn m n  (18) 

 ( , ) ( ) ( )v vT u v a P v P umn m n  (19) 

In this expression, ua  and va  are the contravariant unitary 

vectors. This testing scheme is quasi-Galerkin in the sense 

that the basis and testing functions span the same 

polynomial space on rectangular patches but not in the 

general case. The contravariant unitary vectors are 

orthogonal to the covariant unitary vectors and it was 

found that this choice performed better than pure Galerkin 

testing. By taking the inner product of the testing 

functions and Eqs.(12)-(13), we arrive at the matrix 

equation  

 0Lx  (20) 

where L  is a P × N matrix, whose elements represent the 

field radiated by a particular basis function, weighted by a 

particular testing function. The matrix is typically chosen 

to be square so that P = N.  

3.2 Regularization 

To obtain a solution to the ill-posed 

problem
2

min Ax b , regularization is needed by 

imposing a priori information about the solution. The a 

priori information is obtained from the fact that the 

desired currents on the reconstruction surface should 

satisfy the boundary condition, that is, 
2

Lx obtained 

from Eqs. (12)-(13) should be small. A regularization 

method suitable for this purpose is that by Tikhonov, in 

which the regularized solution x is determined by solving 

the least squares problem [13]:  

 
2 22min

22
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The regularization parameter λ determines the weight 

given to minimizing the residual norm relative to the 

regularization term. It should be noted that this 

regularization scheme is fundamentally different from 

those of [10]-[11], because the data equation and the 

boundary condition equation are used separately. 

If λ = 0 is used in the above expression, no regularization 

is applied, and 0x  equals the standard least-squares 

problem, which is useless since it is dominated by rapid 

oscillations due to noise. When λ
2
 is increased, more 

weight is put to the regularization term and 0x  in 

case L  has full rank. A method for obtaining the optimum 

regularization parameter is the L-curve method [14]. The 

key idea in this method is to realize that the solution norm 

2
Lx , plotted versus the residual norm 

2
Ax b  as function of λ in a logarithmic scale, is a 

monotonically decreasing function and forms the shape of 

an L. When λ is large, the solution is over-regularized, 

and (η, δ) is on the lower-left part of the L-curve. 

Similarly, when λ is small, (η, δ) is on the upper-right 

part. The optimum value of λ is that corresponding to the 

L-curve corner.  

3.3 Resolution 

To illustrate that the proposed INV-MoM technique is 

capable of reconstructing fields with a resolution better 

than λ0/2, a numerical case involving an array of three y-

polarized Huygen’s sources located in the xy-plane is 

considered, as shown in Fig. 5. The separation distance d 

equals λ0/4, the reconstruction surface is a box of height 

λ0/5, and the field is observed on the top face of the box, 

which is at z = 0.1λ0.  The surface of reconstruction is 

discretized using 16 patches and the number of unknowns 

and the required number of far field sampling points are 

listed in Table I.  

 
Figure 5 - Three Huygen’s sources separated by the 

distance d= λ0/4. 

  

Reconstruction surface λ0/2  λ0/2  λ0/5 

Patches 16 

Polynomial order 5 

Unknowns 1440 

Far-field sampling points 720 

Table I - Parameters for the considered numerical 

case. 

The electric field on the z = 0.1λ0 plane exhibits a rapid 



variation and even the best-possible approximation with 

the given set of basis functions may not be an accurate 

representation of the exact field. To illustrate this, we 

show both the exact field and the best possible 

approximation with the current set of basis functions. The 

latter solution has been obtained by forward MoM. All 

plots in this section show the y-component of the electric 

field.  
The results for a separation of λ0/4 are presented in Figure 

6. It can be seen in Figure 6b that the 5th-order 

polynomial expansion has problems along the horizontal 

center line. This problem can be recognized in the 

reconstructed field for noise-less far field data which is 

shown in Figure 6c. The reconstructed field is in good 

agreement with the best possible field for the present 

discretization, although the three sources appear slightly 

closer together. The reconstructed field for noisy far field 

data is shown in Figure 6d. The two lower sources can no 

longer be distinguished whereas the third source can 

clearly be identified.  

 
            (a)                                    (b) 

 
                  (c)                                     (d) 

Figure 6 - Electric field from three Huygen’s sources 

of Fig. 5 separated by a distance of λ0/4. (a) The 

reference field. (b) The best possible field for the 

present discretization. (c) Field reconstructed from far 

field data without noise. (d) Field reconstructed from 

far field data with signal to noise ratio 60 dB. 

4.  Summary 

Two antenna diagnostics techniques are presented, both 

allowing the reconstruction of currents or fields on a 

reconstruction surface close to the antenna with a 

resolution better than λ0/2. This important property, which 

cannot be obtained by the traditional backpropagation-

based reconstruction techniques, is illustrated through 

numerical examples. The two techniques are presently 

being implemented in a commercial computer program to 

be available in the nearest future. 
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