
Paper presented at “Antenna Measurement Techniques Association 33rd Annual 
Symposium” (AMTA 2011), Denver, Colorado, USA, 16-21 October 2011. 

A NOVEL ACCURATE PATTERN FITTING OF NOISY IRREGULAR 
BEAM DATA FOR THE PLANCK SPACE TELESCOPE 

 
Oscar Borries, Frank Jensen, Per Heighwood Nielsen 

TICRA 
Laederstraede 34, 1201 Copenhagen, Denmark 

 
Jan Tauber, Arturo Martín-Polegre 

ESTEC 
Keplerlaan 1, 2200 AG Noordwijk, The Netherlands 

 

ABSTRACT 
Kriging fitting, originally developed for geological 
exploitation, is here applied for fitting an expected 
pattern to noisy, irregular in-flight measurements of a 
satellite antenna.  

The noise level in in-flight measurements is often so 
high that only the central part of the main beam ap-
pears. By the Kriging method, first a characteristic 
function, the regression model, is fitted to the meas-
urements. For the main beam this is chosen to be de-
scribed by a general second order polynomial. To this 
is added a more detailed correlation model which 
represents realistic deviations from the regression 
model but filters out the fast variations of the noise. 

The method is applied on simulated measurements on 
the Planck RF telescope and the presented results 
show a considerable reduction of the noise floor of the 
pattern; even beam details invisible in the original 
measurements (a shoulder) are revealed by the pat-
tern fitting1. 
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1.  Introduction 
Testing of a satellite borne antenna after launch is desir-
able in many cases. For the Planck Space Telescope the 
operating temperature of the reflector antenna is 40K and 
satisfactory testing on the ground could not be achieved 
as extremely accurate knowledge of the antenna pattern is 
crucial for the scientific results. 

The Planck satellite [1] is a spinning satellite with a dou-
ble reflector which scans the celestial sphere for weak 
signals from the Big Bang and focuses these on the focal 

                                                           
1 The work presented in this paper has been carried out under 
ESTEC Contract No. 18395/NL/NB 

plane with 47 detectors operating from 30 to 857 GHz, cf. 
Figure 1. 

 

Figure 1 – The Planck double reflector antenna sys-
tem with two ellipsoidal mirrors (aplanatic configura-

tion).  

From the antenna pattern obtained by the in-flight testing 
it is possible to deduce information about the antenna 
such as possible defects of the reflector surface which 
may then be used to predict a better pattern. A method 
based on this technique and further combining data from 
detectors at different frequency bands has previously 
been presented [2]. Further details regarding the spinning 
antenna may also be found here. 

In the present paper we will describe a new powerful 
technique – based on a Kriging algorithm – for recon-
structing the pattern measured by in-flight testing of the 
Planck antenna system. In the in-flight testing Mars and 
Jupiter are scanned as reference sources but noise gener-
ated by the sampled planet and by the temperature of the 
detector (though down to 0.1K) hampers the measure-



ments. In the new reconstruction technique described here 
the influence of the noise is reduced considerably. 

The measurements and the method are shortly presented 
in Sections 2 and 3 and a more detailed description of the 
algorithm is presented in Section 4. The results are pre-
sented in Section 5 and the conclusions are found in Sec-
tion 6. 

2.  The measurements 
For the Planck Telescope, the in-flight measurements are 
characterized by a large number of measurements in an 
irregular pattern as a consequence of the scanning per-
formed by the rotating satellite. Furthermore, the signals 
are measured several times in nearly the same directions. 
On the other hand, the measurements contain intrinsic 
noise, particularly at the lowest frequencies. The 30 GHz 
LFI detector will be used as example in this presentation. 
Results will further be given for a 353 GHz HFI detector. 

As the disclosure of in-flight measured data is contractu-
ally not allowed, all presented results are based on simu-
lations of realistic data. 

An example of the directions of measurements of Jupiter 
covering the main beam area for the 30 GHz LFI detector 
is shown in Figure 2. The in total 41677 directions are 
found distributed in ‘lines’ along the scan direction. The 
measured pattern is presented in Figure 4. 

 

Figure 2 - Directions of measurements, each given as a 
dot, within the main beam of a 30 GHz detector. Note 

the distribution in lines along the scan direction v. 

3.  Method 
The goal is to find a model from the measurements for the 
true antenna pattern. As the measurements are noisy, the 
model shall not follow the measurements strictly, but pre-

sent a pattern description in which the noise is smoothed 
out while minor, but realistic, field variations are recon-
structed. 

To reduce the noise, and achieve a model in a regular 
grid, a two-stage fitting algorithm has been developed, 
exploiting the spatial dependency of the measurements. 
The first stage consists of a rather crude filter, the pur-
pose of which is to reduce the noise as well as the amount 
of data. The second stage is the Kriging fitting model. 
This stage is inspired by the implementation in the Matlab 
Kriging toolbox DACE [3,4], modified to employ fitting 
and implemented in FORTRAN with focus on memory 
efficiency and stability. 

4.  Algorithm 
Mathematically, we are given m measurements of field 
values z in directions (u,v), where  

u = sinθ cosϕ 
v = sinθ sinϕ 

with θ and ϕ being usual spherical coordinates and θ = 0, 
corresponding to (u,v) = (0,0), is close to the direction of 
the beam. 

The samples are noisy and irregularly distributed, but 
have a spatial dependency, such that the closer two meas-
urements are in the uv-plane, the greater the correlation 
between their field values. 

With the datasets we are considering, the number of 
measurements m is far too large to employ the Kriging 
algorithm directly as the chief computational costs of 
computing the Kriging model is the Cholesky factoriza-
tion of a m×m matrix for which the number of operations 
scales as O(m3). For the 30 GHz dataset, m = 41677, and 
thus a data reduction is needed. Furthermore, experiments 
have shown that Kriging fitting performs poorly on data-
sets affected by serious noise, particularly for low-
dimensional data. Therefore, a crude spatial filter is ini-
tially employed.  

4.1  Filter 
The purpose of the filter is to reduce the noise as well as 
the amount of data. This may be done by an averaging as 
it may be assumed that the noise is symmetrically distrib-
uted with an average of zero. 

The directions (u,v) of the measurements is divided into a 
grid and the output of the filter is the average of the 
measurements within each cell of this grid. When the 
cells are large each cell will keep a large amount of data 
and the averaging will give a good noise reduction. On 



the other hand, field variations within a cell cannot be 
represented and the cells shall not be too large. 

The Nyquist criterion states that all field variations will 
be measured when the sampling is carried out with a 
spacing which does not exceed λ/D, λ being the wave-
length and D the diameter of the radiating aperture. This 
is the theoretical maximum sample spacing. For a good 
interpolation of the field the sample spacing shall be at 
least four times smaller, i.e. 0.25λ/D. However, the re-
quest for fine pattern details suggests an even denser 
spacing of the data points such as 0.1λ/D. In the present 
case the 41677 samples cover a total region which in u 
and v is about 5λ/D. Averaging the data within cells be-
ing 0.1λ/D in both u and v then results in 2500 cells with, 
in average, 17 data points in each cell. This choice is 
found to be a good compromise between noise reduction 
and the ability to detect pattern details. An example of the 
filtering is illustrated in Figure 3. 

 
Figure 3 - A mini-example of the filter. The blue lines 
represent four cells of the grid, separated by 0.1λ/D. 
The red crosses are the measurements, and the green 
dots are the result of the filter - representing the aver-

age of the samples inside each cell. 
 

4.2  Kriging 
The method of Kriging exploits a supposed spatial de-
pendency in a set of samples to impose additional re-
quirements on the fit. In its simplest form, it basically 
involves the fitting of a correlation model to a sample set 
- it was in this form Danie Krige [5] introduced it. Later 
work by several people, most notably G. Matheron [6], 
formalized it further and introduced several variations of 
the model, including the Universal Kriging model applied 
here. Its use in modelling deterministic behaviour was 
introduced by the landmark paper [7], allowing wide-
spread use of the method which was previously restricted 
to the geostatistical community. Theoretically, the key 

strength of the Kriging predictor is that amongst all linear 
and unbiased estimators, it minimizes the expected error 
[8, p. 60]. In practice, it has several other advantages 
which have prompted its use in the present scenario – 
most notably, it yields a smooth model and requires no 
special considerations when faced with irregularly dis-
tributed data. Also, its use of a global regression model 
and a local correlation model allows for surprisingly good 
accuracy when applied correctly. 

4.2.1  Model 

Given is a set of m measured field values i  in directions z
( ), ,  1, ,u v i m= …

u v
z

( ), , , Tz z z= …z
( ), , , T

m= …X x x x
ix

i i . The process is started by normalizing 
the data by subtracting the average value and dividing by 
the standard deviation for each of the variables ,  and  

. In this way they each have an average of zero and a 
standard deviation of one whereby better numerical and 
statistical properties are obtained [3,8]. 

Mathematically, we arrange the normalized field values in 
a vector 1 2 m  and the normalized mea-
surement directions similarly in 1 2  
where the i’th row  describes the direction ( ),i iu v

( , ) ( , ) ( , , , )u vz u v F u v S u v

. 

Inspired by [7], a model is adopted that expresses the 
field z(u,v) by a sum of a regression model F and a corre-
lation model S such that the field model is given by 

 (4.1) = +

,   1 , 2, ,j n

ρ ρ

Here, the regression model, F(u,v), shall be restricted to a 
polynomial2 in u and v. The number n of coefficients, 

jβ = … , needed for describing the polynomial 
depends on the order of the polynomial. In our case we 
found that the use of second order polynomials provided 
the best results, yielding n = 6: 

( ) 2 2
1 2 3 4 5 6,F u v u v u v uvβ β β β β β= + + + + +  

  (4.2) 

The polynomial term with coefficient jβ  is denoted 
( ),j ( ) ( ), 1, , ,1 6f u v  (i.e. f u v f u v uv= … =

( ) ( )
1

, ,
n

j j

) and Eq. (4.2) 
may in general be expressed as 

u v f u vβ= ∑

( , , , )S u v

F  (4.3) 

The correlation model, u vρ ρ , is a Gaussian 
model controlling the correlation between measurements 
according to the distance between the measurement direc-
tions. Here, uρ  and vρ  act as scaling parameters in the 
uv-plane as explained below. 

This allows us to express Eq. (4.1) as a matrix expression 
                                                           
2 In general, other linear expressions may be applied for 
the regression model. 



  ( )= +z Fβ Φ ρ α  (4.4) 

Where F is the regression matrix, i.e. the element ijF  
represents the j’th polynomial jf

( ),i i iu v=x

( ), 1,2, ,ij j i

 evaluated at the i’th 
measurement direction  

  1, 2,  , ,F f i j n= …x

Φ

ρ

( , , ),  i, j 1,2, ,i jr = …ρ x x

v v ⎤
⎥⎦

β
r

m= = …  

and β  is a vector with the polynomial coefficients 

( )1 2, ,..., nβ β β=β T . 

The elements ijΦ  of the correlation matrix  are given 
as the correlation between the i’th and the j’th measure-
ment direction according to the scaling parameters  

 . ijΦ = m

The correlation is expressed as a Gaussian correlation 

( ) ( )2 2
( , , ) exp – exp –i j u i j v i jr u uρ ρ⎡ ⎤ ⎡= − −⎢ ⎥ ⎢⎣ ⎦ ⎣
ρ x x  

  (4.5) 

The first term in Eq. (4.4) expresses a model of the meas-
ured field as a rather crude approximation by a polyno-
mial with n coefficients . To this is added the correla-
tion functions  in the form of Gaussian hats of widths 

uρ  and vρ  in u and v, respectively, and amplitudes ad-
justed by the weights 1 2 mα  such that the 
model agrees with the measured field values at the mea-
surement points. 

( , , , )Tα α α= …

This is a strict model which may be applied for interpola-
tion, but it does not take into account that the measure-
ments may be defective in any way. To achieve a realistic 
fitting model, we therefore add a constant γ , ( 0)γ >

Φ
1Φ =

 to 
the diagonal elements of Φ, yielding the final model  

 
 (4.6) 

I  being the identity matrix of order m. The i’th diagonal 
element of  is the autocorrelation for the i’th measure-
ment, ii  cf. Eq. (4.5). By adding γ  to the diagonal 
elements of the matrix, we give the model freedom to 
follow a more likely path following, but not passing 
through, the measurement points. 

Computation of the parameters β , ,  and γ  is by far 
the most tricky aspect of the implementation, as great care 
needs to be taken to ensure numerically stable and com-
putationally efficient results. Principally , the coeffi-
cients to the polynomial F(u,v) in Eq. (4.3), is first de-
termined by solvin

ρ

β

g 

α

2
min −z Fβ  (4.7) 

This is an over-determined system fitting the polynomial 
F(u,v) to the measured data. The terms of Eq. (4.6) are 
then rearranged 

[ ( ) ]γ− = +z Fβ Φ ρ I α

ρ

( , )u v=x

( , ) ( , ) ( , , )z u v F u v

 (4.8) 

and α  is determined by a matrix inversion;  and γ  may 
be determined automatically by a Maximum Likelihood 
Estimate, details may be found in [3,4,9]. The key point 
in the method is the application of a model, Eq. (4.6), 
which consists of a global regression part and a local cor-
relation part. 

4.2.2  Predictor 

Having determined the model, we can predict the field 
value z at an arbitrary direction  as [3, (2.16)] 

+ ⋅r ρ x X α

( , , )

 (4.9) =

where F(u,v), the regression part, is given by Eq. (4.3). 
The last term, the correlation part, is the dot product of 
the vector r  – for which the j’th element j j  is 
the value of the correlation, Eq. (4.5), between the actual 
direction x and the j’th measurement direction 

r ρ x x

jx  – and 
the vector α  with the weights of the correlation func-
tions. 

This yields a prediction in the normalized space which 
has to be scaled back to the original space according to 
the normalization mentioned at the beginning of Section 
4.2.1. This is simply carried out by multiplying by the 
standard deviation and next adding the average value of 
the measured field values.  

5  Results 
The beam of the 30 GHz LFI detector is simulated meas-
uring Jupiter. The main-beam pattern is calculated by 
GRASP [10] applying Physical Optics. To this is added a 
realistic noise at 14 dB (rms) below peak. The resulting 
simulated pattern is shown in the 3D view in Figure 4. 

[ ( ) ]γ= + +z Fβ Φ ρ I α  



 
Figure 4 - Simulated main beam with noise for the 30 

GHz detector LFI-27-S. 

Applying the algorithm with a cell size for the filtering of 
0.1λ/D and Kriging parameters as computed by the algo-
rithm, yields the result shown in Figure 5 clearly demon-
strating the reduction of the noise. 

 
Figure 5 - Noise filtered and Kriging fitted main beam 

for the 30 GHz detector LFI-27-S. 

The fitted simulated main beam is compared to the noise-
less simulated beam in Figure 6. The main shapes of the 
contour curves down to the noise level at 14 dB are very 
well regenerated; further, the noise floor is reduced to 
about 20 dB below peak and the noise is not dominant 
until levels as low as 25 dB below peak that.  

 

Figure 6 - Noise filtered and Kriging fitted main 
beam, shown in dashed red curves, compared with 

noiseless pattern for the 30 GHz detector, LFI-27-S, 
shown in solid blue curves. 

The runtime for the pattern fitting is in seconds giving 
possibility for some interactive steps in the modelling for 
solving Eq.(4.6). 

The improvements obtained for a High Frequency In-
struments are exemplified by a 353 GHz detector. The 
beam width is then about 12 times less than in the previ-
ous example due to the 12 times higher frequency. This 
implies that the region of measurements in the uv-space is 
reduced by a factor 144 and so is the number of available 
field measurements. The number of cells is kept constant 
resulting in 1.4 points per cell in average. The reduction 
in the noise by the filter is therefore less pronounced. On 
the other hand, the noise in the measurements is lower, 
namely at 26 dB below peak.  

The simulated measurements of Jupiter show a simple 
main beam, Figure 7, but after the filtering and the pattern 
fitting with the Kriging technique the pattern of Figure 8 
is obtained, and now a shoulder appears at low u- and v-
values. The shoulder is real which can be seen in the 
comparison to the reference pattern, Figure 9. In this case 
the noise level has been reduced to about -28 dB. 

The Kriging fitted beams are used directly in the retrieval 
of the geometrical information on the Planck reflectors. 
Due to the very precise fitting and noise reduction a lar-
ger dynamic range of the measured beams can be utilized 
in the retrieval giving much more information about the 
telescope mirror alignment and surface deformations. 
Furthermore, it is much simpler to calculate the main 



beam characteristics, such as beam peak, half power ellip-
ticity and efficiency in the regular grid generated by the 
Kriging. 

 
Figure 7 - Simulated main beam with noise for the 353 

GHz detector HFI-353-1. 

 
Figure 8 - Noise filtered and Kriging fitted main beam 

for the 353 GHz detector HFI-353-1. 
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Figure 9 - Noise filtered and Kriging fitted main beam 
for the 353 GHz detector HFI-353-1 shown as dashed 

curves and compared to the noiseless pattern shown as 
solid curves. 

6.  Conclusions 
The algorithm presented for reconstructing an antenna 
main-beam pattern from noisy measurements demon-
strates considerably improved pattern information with a 
reduced noise level. The method starts with a crude filter-
ing of the data utilizing the availability of a large amount 
of data. The key point of the method is, however, the fol-
lowing step with a Kriging fitting applying a global re-
gression part overlaid with a local correlation part.  

The Kriging fitting hereby exploits the spatial depend-
ency of the data, namely that it represents a main beam 
which is primarily fitted by a second order polynomial. In 
addition, the model allows deviations from this primary 
model by including a correlation term representing the 
correlation between the measured points. 

Furthermore, although not discussed here, the runtimes 
are very reasonable, in the order of seconds, allowing a 
more interactive approach to the modelling process. In 
conclusion, the algorithm presented improves upon pre-
vious algorithms and will be vital in the in-flight geome-
try retrieval of the Planck space telescope.  
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