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Abstract—This paper presents two new modelling algorithms
that was recently added to the commercially available GRASP
software package for electrically large antenna and scattering
problems. In particular, a new higher-order multilevel fast
multipole solver (HO-MLFMM) provides very high simulation
accuracy while requiring significantly less memory and CPU time
than the commonly available low-order MLFMM. At the same
time, the solver incorporates a generalised form of the underlying
surface integral equations, which allows the use of non-connected
meshes and enhances the robustness in real-life applications. As a
further addition to GRASP, we outline a new Fast-PO algorithm
which provide accelerated integration of Physical Optics currents
as well as surface currents in general. The algorithm eliminates
some of the limitations of previously published methods, e.g.,
by allowing observation points located well within the near-field
region of the antenna without resorting to a much slower direct
surface integration. The capabilities of the new algorithms are
illustrated by examples involving a large reflector antenna ground
station and a detailed model of a communication satellite.

Index Terms—method of moments, higher-order basis function,
multi-level fast multipole method, fast physical optics, reflector
antennas, platform interactions

I. INTRODUCTION

Solution of scattering and radiation problems continues to
be a challenging area that may require significant computer
hardware resources. Several software packages are avail-
able and offer general-purpose solvers based on full-wave
or asymptotic solutions to Maxwell’s equations. One such
software package is GRASP which is commonly used for
analysis of reflector antenna problems and other electrically
large problems, e.g., scattering by satellite platforms. This
paper describes two fast and accurate modelling algorithms
that have recently been added to GRASP.

The most successful method for full-wave solution of elec-
trically large antenna problems is the Multilevel Fast Multipole
Method (MLFMM) [1] which is available in the majority
of commercial software packages for antenna design and
analysis. This widely available algorithm solves Maxwell’s
equations in the frequency domain and is typically based on a
surface integral equation in which the currents are discretised
using RWG basis functions on triangular domains. Several
researchers have proposed higher-order (HO) basis functions,
e.g. [2], that allow the number of unknowns to be reduced by
a factor of 5 while maintaining the same accuracy as obtained
using RWGs. However, higher-order basis functions result in
poor performance in standard MLFMM implementations, see
e.g. [3], and basis functions higher than 2nd order are generally

not available in commercial MLFMM solvers. In order to solve
this problem, a revised MLFMM scheme, the so-called HO-
MLFMM, was recently presented in [4]. This algorithm allows
basis functions of very high orders to be used effectively
in MLFMM. This approach has been implemented in a new
HO-MLFMM solver that allows significant memory and CPU
savings when compared to the widely available RWG-based
MLFMM. This new solver is described in Section II below.

Integration of surface currents over electrically large sur-
faces is required in several applications, e.g., after solution
of an MLFMM problem or when Physical Optics (PO) is
used to compute surface currents on very large scatterers.
In such cases, both the number of field output points and
the number of current samples grow with the square of
the frequency, therefor leading to O(f4) frequency scaling.
A standard integration procedure becomes extremely time-
consuming and a fast algorithm is in high demand. Several
such algorithms have been published in the past, e.g., [5],
but their performance is limited when observation points are
located very close to the current samples. In addition, the
existing algorithms have not demonstrated the accuracy needed
for industrial applications. A new algorithm that solves these
problems have just been introduced [6] in GRASP and the
performance of this algorithm is demonstrated in Section III
below.

II. EFFICIENT HO-MLFMM SOLVER

Higher-order MoM is very efficient and typically reduces
the number of unknowns by a factor of 5 when compared to the
commonly applied low-order MoM. Despite this reduction in
unknowns, the memory and CPU requirements of MoM grow
rapidly with frequency and an efficient MLFMM is needed.
Multiple research groups have attempted to make MLFMM
work together with higher-order MoM, but the algorithms
presented so far did not work well with expansion orders
higher than two. Recently, we presented a HO-MLFMM that
enables the use of very high expansion orders and provides
great savings in comparison to the widely available low-order
MLFMM. This HO-MLFMM has been implemented in a new
solver available in GRASP and the performance of this solver
is studied in Section II-A below. The solver is based on a
generalized set of surface integral equations which results
in a very robust solver that works with defective and non-
connected meshes, as illustrated in Section II-B. Finally, the
HO-MLFMM solver is applied to a practical antenna problem
in Section II-C.



A. Memory and CPU Performance of HO-MLFMM solver

The new HO-MLFMM solver works with both h- and
p-refinement [2], implying that higher accuracy can be ob-
tained by reducing the patch size h or by increasing the
polynomial order p. Typically, a high polynomial order and
large patches are applied in smooth regions of the scatterer
whereas small patches and a low polynomial order are used to
model small geometrical features. When MLFMM is applied
with different expansion orders, there is no direct link between
the number of basis functions and the solution error. Therefore,
it is more illustrative to study the required resources versus the
solution error since this shows how one can minimise the error
for a given set of resources. In order to study the solution
error we compare with an exact solution by computing the
scattering from a sphere with a diameter of 50λ. A fixed
polynomial order between 1 and 5 is applied on meshes
with different patch densities and the memory, CPU time,
and solution error are recorded for each run. The plot in
Figure 1 shows the results for the memory performance for
both a standard MLFMM [1] and the HO-MLFMM [4]. The
following observations can be made:

• The standard MLFMM scheme (red curves) does not
work well with higher-order expansion functions because
the memory requirement grows when the order is in-
creased. The lowest memory for a given accuracy is
obtained by applying 2nd order basis functions (p = 2).
This observation is in line with [3].

• When the standard MLFMM scheme is used, the memory
requirement grows rapidly if high accuracy is desired.

• The HO-MLFMM algorithm provides great memory sav-
ings, even for first-order basis functions.

• With the HO-MLFMM approach (blue curves), the mem-
ory curve is almost flat and it is very cheap in terms of
memory to ask for high accuracy.

• With HO-MLFMM (blue curves), all expansion orders
higher than one results in roughly the same memory
requirement to reach a desired error level.

The last item above may suggest that there is no significant
benefit from using high expansion orders. However, this is not
at all the case, which is apparent when observing the CPU time
requirements for each matrix vector product reported in Figure
2. The following observations can be made:

• There is a slight CPU time penalty by using the new
HO-MLFMM scheme relative to the traditional MLFMM
scheme. However, the small CPU time penalty enables
the large memory savings reported in Figure 1.

• There is a direct relation between the CPU time require-
ment and the expansion order. For a given RMS error,
the fastest solution is always obtained by choosing the
highest possible expansion order.

• The CPU time curve is almost flat for the highest expan-
sion order. This implies that the time required for per-
forming the matrix-vector product is virtually unchanged
when a higher accuracy is desired.
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Fig. 1. The total memory for varying RMS error and polynomial order
p, using CFIE, with the standard MLFMM algorithm and the modified HO-
MLFMM algorithm.
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Fig. 2. Time per matrix-vector product normalised to the time for the fastest
run. Each curve corresponds to a fixed polynomial order (p= 1, 2, 3, 4, 5) and
results are shown for the standard algorithm (red) and the modified algorithm
(blue).



Fig. 3. Simulation-ready meshes supported by the new HO-MLFMM solver. Left: Mesh originating in CAD file with missing topological information. The
current will flow seamlessly across the partially overlapping edges. Centre: Meshes originating in different sources can easily be joined, without worrying
about mesh continuity. Right: Accommodation of small geometrical features in a connected mesh (top) leads to irregular meshing in a larger area than needed
with a non-connected mesh (bottom).

As a further benefit, we note that a relatively large part
of the required memory is occupied by the near field matrix
when a high expansion order is used (typically 75 percent).
With a low-order solution, the near field matrix is typically
smaller (e.g. 50 percent). The relatively large near-field matrix
provides two additional benefits of the HO-MLFMM:

• With a larger near field matrix, more information is
available for constructing an effective preconditioner,
leading to faster iterative convergence.

• The near field matrix is only used once in each iteration
which implies that 75 percent of the total memory can
be placed in out-of-core storage with a relatively small
time penalty. The new HO-MLFMM solver also exploits
this option to further extend the range of problems that
can be solved with a given computer memory.

In summary, the HO-MLFMM algorithm allows for a very
efficient solver using less memory and CPU time than com-
parable solvers.

B. Mesh robustness

The accuracy and convergence properties of an integral-
equation based solver are heavily influenced by the quality of
the surface mesh used as input. By far the majority of integral-
equation based solvers are based on the mixed-potential EFIE
that requires continuous basis functions. All commonly applied
basis functions, e.g. RWGs, are continuous only when adjacent
mesh elements are sharing an edge and the normal continuity
of the surface current flowing across the edge is enforced. The
strict continuity requirement imposed on the basis functions
implies that meshes must be properly connected. If two
adjacent patches only have partially overlapping edges, the
continuity requirement is violated and the solution is wrong.
This leads to a number of difficulties and potential errors when
applying integral equation solvers to practical problems:

1) A mesh without proper connectivity may arise when the
geometry is imported from a CAD file with missing
or wrong topological information. If two faces are in
physical contact but this information is not present in
the CAD file, the result may be a non-connected mesh.

2) The connectivity requirement makes it difficult or
impossible to join meshes originating from different
sources. One example is when an antenna has been
been defined by a user-defined mesh, e.g produced by
a script or a 3rd party program, and the scattering
from a platform imported from a CAD file needs to be
computed. A hole can then be introduced in the platform
CAD file to accommodate the antenna. However, the
user-defined mesh and the platform mesh will generally
not match and the result is a non-connected mesh with
partially overlapping edges, and a large solution error.

3) A high mesh density is required when small geometrical
features must be accommodated in the mesh. This high
mesh density may spread to adjacent faces and the
introduction of a local feature will generally require
remeshing of the entire structure. The irregular region
of the mesh influenced by the presence of a small
geometrical feature will be larger than necessary, simply
to obtain a connected mesh.

An elegant solution to the problems listed above was in-
troduced recently [7]. By using a generalised continuous
integral equation, the range of permitted basis functions can
be extended such that discontinuous basis functions and non-
connected meshes do not introduce solution errors. This ap-
proach was demonstrated for PEC objects and RWG basis
functions in [7] but may be readily extended to the case of
dielectric materials and higher-order basis functions. The new
HO-MLFMM solver employs this generalized set of equations
and as a consequence, there is no continuity requirement
imposed on the mesh. The robustness of the solver is therefore



TABLE I
COMPUTATIONAL RESOURCES AT 1.5 GHZ.

Implementation Processor Memory Time
[8] Dual Xeon E5-2690 (Server) 170 GB 17 hours

HO-MLFMM 2.6 Ghz i7 (Laptop) 8 GB 36 min

Fig. 4. Mesh for the Helios Command Station Antenna

greatly enhanced since the desired simulation accuracy is
maintained on both connected and non-connected meshes.
Figure 3 shows three examples of simulation-ready meshes
that would not be supported by most other solvers.

C. HO-MLFMM applied to practical antenna problem

As a specific example of an actual application, we consider
the scenario discussed in detail in [8], concerning the Helios
Command Station antenna. This is a near-field Cassegrain
configuration, utilizing a 30 m diameter main reflector along
with a 4.1 m diameter subreflector and a 9.4 m long horn
radiating onto a 3.2 m diameter paraboloid. The mesh of this
structure using up to 2λ× 2λ patches at 1.5 GHz is shown in
Figure 4. The actual surface used in [8] was based on a laser
scanner model while the results presented here are obtained
on a nominal reflector surface. However, the electrical size
and complexity of the problem are the same as in [8] which
allows comparison of the computational resources used by the
two implementations. The problem was solved on a laptop
computer in about half an hour using 8 GB RAM. The features
for out-of-core storage were not needed for this case. The
computational resources are listed in Table 1 along with the
resources reported in [8].

A second practical application example is shown in Figure
5. The HO-MLFMM solver is here used to compute the scat-
tering by a large and fully detailed model of a communication
satellite at Ku-band. The model includes the satellite platform
itself, several antennas, as well as the solar panels. The active
antenna is one of the dual-reflector antennas fed by a conical
horn which is also included in the model. The problem size
is equivalent to a 22 million unknown RWG problem but the
solution is obtained in less than three hours. The table shown in
the inset of Figure 5 lists some of the HO- MLFMM solution
parameters.

III. FAST INTEGRATION OF SURFACE CURRENTS

The most commonly applied methods for electrically large
scattering and radiation problems are the MLFMM and the
Physical Optics method. In both methods, the surface current

on a very large domain is obtained which subsequently can be
used to find all other desired quantities such as the radiation
pattern. The large size of the problem implies that a very
large number of sample points are needed when numerically
integrating the surface currents to obtain the radiated field, in
particular when near fields are desired. Due to the oscillating
nature of the integrand, numerical integration of the surface
currents can be very time-consuming and often becomes
the bottleneck. The Fast-PO algorithm, e.g. [5], has been
introduced to overcome this problem. However, the existing
algorithms have not demonstrated the robustness needed in
industrial applications when strict accuracy requirements are
present and/or when the field sample points are located in
the extreme near field of the antenna. In those situations,
the performance of the existing algorithms drop rapidly, due
to the need for oversampling or for sub-divisioning of the
problem into many smaller subproblems where the field points
are no longer in the extreme near field. A new approach was
introduced recently [6] and has been implemented in GRASP.
This new method provides a very large computational speedup,
even when the field points are located in the extreme near field.

As an example of the efficient surface current integration
we choose to evaluate the extreme near field of the Helios
command station antenna considered in the previous section.
The surface currents need to be integrated in order to obtain
the aperture field of the antenna in a plane passing λ/10 behind
the sub reflector. The total number of integration points is 1.2
millions and a fairly dense output grid is needed to capture
the rapidly varying near field of the antenna. We use a λ/5
sampling in each linear dimension leading to more than half
a million field sample points and the details of the grid are
listed in Table II. The computation time for this problem on a
standard laptop computer is 86 minutes when a direct surface
integration is used. However, when the new fast algorithm is
applied the time drops to about 1 minute corresponding to a
speedup of 82 times. The relative RMS error of the aperture
field obtained with the fast method is below 10−4 and the
result is visually identical to the aperture field obtained by
a direct surface integration. The field obtained with the fast
method is shown in Figure 6 where the sub reflector shadow is
easy to observe as well as strong diffraction ripples originating
in the reflector edges.

TABLE II
PARAMETERS OF THE NEAR FIELD COMPUTATION AT 1.5 GHZ.

Number of current samples 1.2 million
Near field grid size 30 m × 30 m
Minimum distance to subreflector λ/10
Sample spacing λ/5
Number of sample points 562,500
Relative error 10−4

Direct surface current integration 1 h 26 m
Fast surface current integration 1 m 3 s
Computational speedup factor 82



Electrical size 167,762 λ2

Patches 105,436
Smallest patch size λ/200
Largest patch size 2.2λ
Basis function order 1-9
HO Unknowns 4,475,955
Equivalent RWG unknowns 22,000,000
Iterations 89
Memory 122 GB
Time 2:50 H

Fig. 5. Detailed model of communication satellite analysed at Ku-band using HO-MLFMM. Top left: CAD model (courtesy of M. Sabbadini, ESA-ESTEC).
Bottom left: Induced currents on the satellite @ 12 GHz when a single reflector antenna is active. Right: HO-MLFMM solution parameters.

Fig. 6. Aperture field of the Helios Command Station (50 dB dynamic
range), observed in the extreme near field at a plane passing λ/10 behind the
sub reflector. Left: Co-polar. Right: Cross-polar.

IV. CONCLUSION

We have presented two algorithms for solving electrically
large scattering and radiation problems in the frequency do-
main. The first algorithm is a HO-MLFMM algorithm that
allows basis functions of very high order to be used in the
MLFMM. The performance in terms of the memory and CPU
time needed to achieve a certain accuracy was shown to be
significantly better when using the new HO-MLFMM solver
than when using the commonly available low-order MLFMM.
In addition, the HO-MLFMM solver is based on a set of
generalised integral equations that allows discontinuous basis
functions and non-connected meshes to be used without loss
of accuracy. This feature adds a high degree of robustness
in practical applications where the mesh originates in a CAD
file or in multiple independent sources. Finally, a new fast
algorithm for integration of surface currents was demonstrated.
It was shown that a speedup of two orders of magnitude can

be obtained even when the extreme near field and very high
accuracy are required.
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