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Abstract—An efficient algorithm for analysis and optimization
of rotationally symmetric reflector antennas, possibly including
3D support structures and/or waveguide components, is pre-
sented. The high efficiency is obtained by using a domain-
decomposition approach where each region of space is char-
acterized independently using a generalized admittance matrix
description. The admittance matrices are obtained using circular
mode-matching, higher-order 3D MoM, or a newly developed
higher-order MoM for bodies of revolution (BoR-MoM). The
antenna performance is rigorously evaluated by cascading the
admittance matrices, which subsequently allows computation of
surface currents or fields in all subdomains. The new algorithm
allows fast and accurate analysis and optimization of rotationally
symmetric reflectors, even in cases that would normally require
a time-consuming 3D solution due to the lack of rotational
symmetry.

Index Terms—Rotationally symmetric reflectors, body of rev-
olution, higher-order MoM, domain decomposition, generalized
admittance matrix

I. INTRODUCTION

Rotationally symmetric reflector systems are attractive can-
didates for realizing low-cost compact high-gain antennas
with low sidelobes and low cross polarization. These compact
reflector systems often employ two reflectors in a classical
axially displaced reflector configuration [1], or alternatively, a
single reflector with a backward radiating hat feed or splash-
plate feed [2], [3]. A common feature of these antennas is a
tight integration of feed, feed hat or subreflector, dielectric
support structure, and main reflector, resulting in a highly
resonant structure. In addition, many terminal antennas based
on rotationally symmetric reflectors include 3D structures, e.g.,
waveguide components with arbitrary cross section or metallic
struts. A typical example of such an antenna was presented
in [4] where the presence of four metallic struts and 3D
corrugations precluded the use of rotational symmetry. The
highly resonant structure and the lack of symmetry often leave
a relatively slow 3D full-wave analysis as the only option,
thus prohibiting efficient numerical optimization of the antenna
performance.

In this paper, we propose a domain-decomposition tech-
nique allowing different analysis methods to be used in dif-
ferent regions of space. With this technique, the rotationally
symmetric parts of the antenna system – usually constituting

the largest part of the antenna – can be analyzed with a Body-
of-Revolution Method of Moments (BoR-MoM) solver and
the remaining 3D parts can be analyzed with 3D-MoM. The
technique allows multiple BoR-MoM and 3D-MoM regions
and the region boundaries may intersect the antenna geometry.
In addition, the technique also includes mode-matching for
circular waveguides and horns.

The domain-decomposition technique is combined with a
generalized admittance matrix framework, where the admit-
tance matrix of each subdomain is extracted by defining
equivalent magnetic port expansion currents on the domain
boundaries. The overall admittance matrix is obtained by
using standard techniques for cascading of admittance ma-
trices. When the excitation is known, the fields and cur-
rents may finally be computed everywhere. The admittance
matrix approach allows a flexible choice of solver in each
domain as well as a very fast evaluation of the antenna
performance during a numerical optimization procedure. This
is accomplished by reusing the admittance matrices of the
unchanged parts and rebuilding the full-wave solution. As
an example, the admittance matrix of the main reflector is
reused when the shape of the subreflector is optimized. By
combining the domain-decomposition approach with a higher-
order BoR-MoM solver, we show that analysis of typical
hat-feed antennas is performed in 1-2 seconds on a laptop,
whereas the time to rebuild the full solution during a numerical
optimization is measured in fractions of a second.

The paper is organized as follows: Section II reviews a
recently developed higher-order version of the BoR-MoM
that reduces the number of unknowns significantly when
compared to the commonly applied low-order solution [5].
Section III introduces the domain-decomposition scheme and
the extraction of scattering matrices is discussed in Section
III-A. Finally, numerical results will be shown to illustrate the
speed and accuracy of the approach.

II. HIGHER-ORDER BOR-MOM

The BoR-MoM has been formulated previously in several
works [5]-[7]. All these works have employed triangular basis
functions on flat curve segments which typically requires 15
unknowns per wavelength to achieve accurate results. This
leads to a typical analysis time of 30-60 seconds per frequency
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point for a compact hat-feed antenna. In this work, we use
a more advanced discretization scheme derived from the 3D
higher-order basis functions presented in [8]. The electric and
magnetic surface currents on each curve segment are expanded
as
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where X = J,M, at,emn, at,omn, aφ,emn, and aφ,omn are unknown
coefficients, N t is the polynomial expansion order along the
generatrix, Mφ is the azimuthal mode index, and Bt,e
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where at = ∂r/∂t, aφ = ∂r/∂φ, and Js(t, φ) = |at×aφ|. In
Eq. (2b), the polynomials Pn are Legendre polynomials and in
Eq. (2a), modified Legendre polynomials P̃n are used to allow
the current continuity to be enforced [8]. The modal expansion
order, Mφ, should be adjusted to the specific problem. The
expansion order along the generatrix, N t, is adapted to the
electrical length of each segment which is usually in the
order of 2λ. The BoR patches, obtained by rotation of a
single curved segment around the z-axis, are illustrated in
Fig. 1 for the case of 1st, 2nd, and 3rd order segments. When
higher-order basis functions and curved segments are used,
the number of unknowns is reduced by a factor of 4 and
drops to about 3-4 per wavelength, implying that the system
matrix is easily stored and inverted, even for structures larger
than several hundred wavelengths. The bottleneck for smaller
problems is usually the matrix fill time which, however, can
be dramatically reduced by using analytical techniques [9].

Fig. 1. Surfaces realized using a single BoR patch of first (left), second
(centre), and third order (right), respectively. The generatrix is described
by a Lagrange polynomial passing through 2, 3, or 4 interpolation nodes,
respectively. The cubic patches using 4 interpolation nodes per patch generally
provides the highest accuracy for curved surfaces and is preferred for
reflectors.

III. DOMAIN DECOMPOSITION ALGORITHM

Analysis and optimization of waveguide devices are rou-
tinely performed by computing scattering or admittance ma-
trices of each component separately and using a cascading
procedure to obtain the overall system response. This rigorous
approach has the following advantages:

1) The computational cost of solving multiple small prob-
lems, and using cascading, is usually much lower than
the cost required for solving one large problem.

2) Each component may be analyzed and optimized inde-
pendently using the optimal analysis algorithm for the
component in question.

3) When optimizing a system composed of multiple com-
ponents, only the component being changed needs to be
re-analyzed. The time to assemble the full solution is
then a fraction of the time used for the initial analysis
of the system.

For waveguide devices, the different components can be de-
coupled by introducing a number of waveguide ports with an
associated set of port expansion functions. The port expansion
functions are usually chosen as the eigenvectors of a waveg-
uide with the same cross section as the waveguide port. This
choice leads to relative small scattering or admittance matrices
as well as high accuracy.

The scattering/admittance matrix method described above
may equally well be applied to a free-space region with a
number of isolated or connected scatterers. The free-space
region is then divided into a number of subdomains, and each
subdomain is enclosed by a port surface with suitable port
expansion functions for the field. The advantages listed in the
previous paragraph still hold for this approach. However, only
a limited number of works have attempted such a solution,
e.g., [10] for the case of coupling between a feed and a
reflector, [11] for an antenna placement problem, or [12]
for antennas in arbitrary environments. These works have
employed spherical vector waves as port expansion functions,
leading to a relatively compact scattering or admittance matrix.
However, the use of spherical vector waves implies that only
spherical port surfaces may be used. This is a severe limitation
for closely separated or connected scatterers.

In the present work, we use an admittance matrix description
of a region of space that may contain one or more scatterers
and one or more waveguide apertures. The region is enclosed
by a number of port surfaces and these ports are denoted
radiation ports. The geometry of the radiation port may be
represented as a surface mesh and standard MoM basis func-
tions are used as port expansion functions, thereby elliminating
the above-mentioned problems of previous works based on
spherical vector waves. The radiation ports enclosing the
region, and optionally the waveguide apertures or a conducting
part of a scatterer, must define a single closed surface that act
as a boundary of the region being characterized. Alternatively,
the region may be defined by the space outside a closed surface
and extending to infinity. The admittance matrix of each region
is obtained by MoM as described below and the choice of port
geometry and associated port expansion functions is addressed
in Section III-B. Once all admittance matrices are known,
standard techniques for cascading of admittance matrices are
employed to eliminate all internal ports. This procedure leaves
only a waveguide port at the horn throat where the desired
excitation can be applied.
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Fig. 2. Top: A horn aperture is illuminating two scattering objects. Bottom: Equivalent problem for extraction of the admittance matrix of the region containing
object A. The aperture is closed by a waveguide port defined on the blue surface Swp. The surface of object A and the outer waveguide wall is denoted Ssc.
The region is bounded by a radiation port located in free space. The surface of this radiation port is denoted Srp and is shown in red. The waveguide port
and the radiation port is closed by a PEC surface. Electric MoM basis functions J are defined on the surface Ssc + Swp + Srp, magnetic waveguide port
basis functions Mwp are defined on Swp, magnetic radiation port basis functions Mrp are defined on Srp, and magnetic MoM basis functions Msc are
defined on the dielectric parts of the scattering object. The space outside the region containing scatterer A is denoted region I and the space inside is denoted
region II.

A. Extraction of Admittance Matrices

The admittance matrix of an arbitrarily shaped closed
waveguide region with N waveguide ports can be obtained
by MoM [13]. In the present work, we use a similar approach
for extracting the admittance matrix of a region enclosed by
multiple waveguide and radiation ports [14]. The region may
contain one or more composite metallic/dielectric scatterers.
Consider the geometry in Fig. 2(a) showing a waveguide
aperture illuminating two scatterers (A and B). We wish to
obtain an admittance matrix of the region containing the
waveguide aperture and scatterer A. To this end, we introduce
the radiation port shown with a red line in Fig. 2(b) and the
waveguide port shown with a blue line. The region is now
bounded by a closed surface consisting of the red and the
blue surfaces, as well as a part of the exterior waveguide wall,
which is considered to be a part of the scatterer. The space
outside the region containing scatterer A is denoted region I
and the space inside is denoted region II. In the following
we assume that an impressed field may exist in region I.
By using the surface equivalence principle, we close the port
boundaries, denoted Sp = Srp + Swp, by a PEC surface and
define equivalent magnetic port currents on this surface as
Mp(r) = −n̂×E(r), where n̂ is a unit normal directed from
region I into region II. The continuity of the magnetic field at
the port interface requires

HI
tan(−M

p) +Hi
tan = HII

tan(M
p) , (3)

where HI(−Mp),HII(Mp) denote the magnetic field radi-
ated in regions I and II, respectively, and Hi is the impressed
magnetic field in region I. The magnetic port current is now

expanded as
Mp(r) = η0

Np∑
i=1

ViM
p
i , (4)

where η0 is the free space impedance and Np is the number
of port expansion function. By choosing Np port weighting
functions Wp

j and forming inner product with (3), we obtain
the matrix equation
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in which [Ip] is related to the impressed field as
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In [14], we showed that the admittance matrix
[
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, that

fully characterizes region II, can be obtained as[
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In these expressions, Wp
j are port weighting functions usually

chosen as Wp
j = Mp, Jt are MoM basis functions, and Ts

are MoM weighting functions usually chosen as Ts = Jt.
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B. Choice of Port Geometry and Expansion functions

The domain decomposition approach employs two port
types: Waveguide ports and radiation ports. For waveguide
ports, the port expansion functions are chosen as n̂ × emn
where n̂ is a unit normal vector to the port and emn are
the orthonormal electric eigenvectors of the waveguide. For
radiation ports, we have chosen to use the BoR patches in
Fig. 1 and the basis functions in Eq. (2) to represent the
port geometry and the port expansion functions, respectively.
This choice results in a very low number of port expansion
functions and consequently a compact admittance matrix. In
addition, the admittance matrix of a circular symmetric region
is a block-diagonal matrix where each block corresponds to a
single azimuthal m-index that may be computed and stored
separately. The selected radiation port geometry is ideally
suited for rotationally symmetric reflectors as illustrated by
the two examples in Fig. 3. The key point is that the BoR-
MoM can be used for the electrically large main reflector even
if one of the blue regions contains a 3D structure.

Fig. 3. Illustration of domain-decomposition approach with radiation
port surfaces shown in transparent blue. Left: Simple subdivision; front of
subreflector and horn aperture are inside one domain, rear of subreflector
and main reflector are in the exterior domain extending to infinity. Right:
Complex sub-division with additional domains, e.g., for optimization of the
subreflector support structure, an additional antenna mounted behind the sub,
or for optimization of a Gaussian vertex plate [15].

IV. NUMERICAL RESULTS

The new BoR-MoM algorithm presented in Section II pro-
vides fast analysis of large rotationally symmetric reflectors.
Example run-times for a canonical ring-focus geometry are
reported in Fig. 4 - these results are obtained on a laptop with-
out using the new domain-decomposition technique. Figure 5
shows a test geometry consisting of a corrugated horn with
75 corrugations, 11λ subreflector, and 70λ main reflector.
The front of the subreflector is now enclosed in a radiation
port, which has been chosen to allow rapid shaping of the
subreflector. This configuration involves three domains:

1) horn interior,
2) front of subreflector, and
3) horn aperture, subreflector rear part, and main reflector.

The new domain-decomposition scheme has then been tested
using various combinations of solvers. In particular, mode-

Main reflector diameter Computation time
15λ 0.2 s
25λ 0.3 s
40λ 0.7 s
50λ 1.2 s
75λ 3.0 s
100λ 5.7 s

Fig. 4. Higher-order BoR-MoM computation times for a simple ring-focus
reflector antenna, (laptop computer, 2011 model). The antenna geometry
comprises a main reflector, a subreflector, and the exterior waveguide wall.
The horn is a simple open-ended waveguide and the reported computation time
includes extraction of waveguide scattering parameters. The computation time
per frequency is listed for antennas of different sizes.

Fig. 5. Ring-focus test geometry: Corrugated horn with 75 corrugations,
11λ subreflector with finite thickness, and 70λ main reflector. The front of
the subreflector is located inside a small domain bounded by the transparent
blue radiation port surface.

matching and BoR-MoM in domain 1, BoR-MoM and 3D
MoM in domain 2, and BoR-MoM in domain 3. The results
were compared to a standard coupled mode-matching/BoR-
MoM algorithm and all methods produced essentially identical
results, thus illustrating that the approach presented here is
rigorous. The excellent agreement can be seen in Fig. 6,
that shows two curves obtained with the standard mode-
matching/BoR-MoM solution, as well as with the new method
using BoR-MoM in domains 2 and 3.

The radiation port geometry in the example above allows
rapid shaping of the subreflector. In each cost function eval-
uation, it is sufficient to recompute the admittance matrix of
the small domain containing the front of the subreflector. The
computation time is reported in Table I where it is observed
that the initial run of the domain-decomposition method is
slightly slower than the standard solution, but the subsequent
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Fig. 6. Far-field pattern of the test geometry shown in Fig. 5. Patterns have been obtained with a standard coupled mode-matching/BoR-MoM solution as
well as the domain-decomposition approach using multiple BoR-MoM domains separated by radiation ports.

recomputation using a new subreflector can be accomplished
an order of magnitude faster than the standard solution. In this
case the recomputation time was reduced to 0.3 seconds.

TABLE I
RELATIVE COMPUTATION TIMES PER FREQUENCY POINT FOR THE

ANTENNA SHOWN IN FIG. 5.

Full mode-matching/BoR-MoM) 1.0
First run of domain-decomposition algorithm with
radiation ports

1.26

Subsequent runs of domain-decomposition algorithm
with radiation ports

0.11

V. CONCLUSION

We have presented a domain-decomposition method based
on generalized admittance matrices and higher-order MoM.
The method allows 3D-MoM to be used for in regions with
no symmetry, whereas the fast BoR-MoM can be used for the
rotationally symmetric parts. In addition, we showed that the
method allows fast recomputation of the full-wave solution
when a geometrical change has been introduced in one of
the subdomains, thus making the method ideally suited for
optimization of rotationally symmetric reflector systems. Ad-
ditional numerical results and comparison with measurements
will be presented at the conference.
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