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ABSTRACT

This paper presents an improved inverse Method of Mo-
ment technique that allows surface currents to be recon-
structed on the surface of an antenna. The input to the
algorithm is measured near- or far-fields and the method
therefore allows antenna engineers to perform antenna di-
agnostics by inspection of extreme near-fields or antenna
currents. The new method provides higher accuracy and
is more robust against noise than previously published
methods.

Key words: Inverse Method of Moments, antenna diag-
nostics, source reconstruction, higher-order basis func-
tions.

1. INTRODUCTION

The Inverse Method of Moments (INV-MoM) has at-
tracted considerable attention as a promising technique
for performing reconstruction of antenna surface currents
based on measured fields. The reconstructed currents
can be used for antenna diagnostics, near-field transfor-
mations, or for artificial removal of undesired contribu-
tions in antenna measurements. The INV-MoM is an
inverse-source problem which is a challenging and in-
herently ill-posed problem to solve. However, the INV-
MoM has no hard limit on the resolution of the recon-
structed currents whereas traditional microwave hologra-
phy and mode-based techniques are typically limited to
a resolution of λ/2 when using far-field input data. This
makes the INV-MoM the most suitable method for high-
accuracy antenna diagnostics on small and medium-sized
antenna where the computational cost is manageable.

The INV-MoM has been investigated by several authors
[1]-[13] in the past decade. The vast majority of these
works have used a discretization scheme based on the
well-known RWG basis functions and have formulated
an over-determined system of equations that relates the
field radiated by each basis function to the field mea-
sured at the field sample points. This matrix system is
then solved via the truncated singular value decomposi-

tion (TSVD) or by means of a conjugate-gradient based
iterative solver. However, it was shown recently that
these methods reconstruct equivalent currents that are not
directly related to the physical fields on the surface of
reconstruction. Instead, the reconstructed currents are
plagued by an arbitrary choice of fields inside the sur-
face of reconstruction and the methods in [1], [3]-[11]
are therefore applicable to far-field to near-field or near-
field to near-field transformations, but not to antenna di-
agnostics problems. This ambiguity is not addressed by
most authors and none of the works [1]-[11] have in-
cluded quantitative comparisons or error estimates of the
reconstructed surface currents.

The formulation ambiguity discussed above can be
avoided by enforcing the zero-field condition inside the
surface of reconstruction which was done for rotation-
ally symmetric problems in [2] and for 3D problems in
[12, 13]. These works enforced the zero-field condition
by means of a point-matching procedure on a λ/10 in-
ward surface to the surface of reconstruction. Both [2]
and [12, 13] used TSVD to regularize the ill-posed prob-
lem and [12, 13] presented quantitative error estimates
for the surface currents, achieving a relative RMS error
of about 10 percent when using noiseless far-field input
data. This paper presents a new approach that differs
from existing works in terms of the applied discretiza-
tion scheme, the enforcement of the boundary condition,
and the regularization scheme. The discretization scheme
adopted here employs higher-order basis functions and
higher-order geometry modeling providing a smooth de-
scription of the currents and the geometry, respectively.
In addition to a reduction of the required computational
resources, the higher-order formulation leads to more sta-
ble solutions even in some cases that are not solvable
by a piecewise linear current representation provided by
the RWG functions. In this work, the boundary condi-
tion is enforced on the actual surface of reconstruction
by means of a quasi-Galerkin testing scheme which re-
quires fewer test functions than the point matching pro-
cedure and avoids the need for finding an inward offset
surface. Finally, we use the Generalized TSVD method
which provides a robust regularization scheme for the in-
verse problem, in which the a priori knowledge originat-
ing from the boundary condition is used independently
from the measured data. We also show how the optimal



regularization parameter can be determined automatically
during the reconstruction process - an important practical
issue which was not adressed in [1]-[13] . The new algo-
rithm is tested using synthetic measured data with added
noise and quantitative comparisons with the exact surface
currents are presented.

2. FORMULATION OF THE INVERSE PROB-
LEM

The inverse source problem is aimed at computing tan-
gential electric and magnetic fields on the reconstruction
surface S enclosing an antenna, based on fields measured
at discrete points outside the surface. On the reconstruc-
tion surface, the equivalent electric and magnetic surface
current densities are defined as

JS = n̂×H (1a)
MS = −n̂×E, (1b)

where E and H are the fields just outside the surface of
reconstruction. These equivalent currents are those corre-
sponding to Love’s equivalence principle since they pro-
duce zero field inside S. They also correspond to the tan-
gential physical fields one would actually measure on S.

The measured field can now be written as

E
meas(r) = −η0LJS +KMS (2)

where η0 is the free-space impedance and the integral op-
erators L and K are defined as

LJS = jωµ0
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where k0 is the free-space wavenumber and G(r, r�) is
the scalar Green’s function of free space. Equation (2)
is referred to as the data equation, since it relates the
measured data E

meas and the unknown surface current
densities JS and MS . This inverse problem has been
formulated previously by several authors, including [1],
[3]-[11].

Love’s equivalent currents in (1) constitute just one set of
possible equivalent currents that radiate exactly the same
field E

meas outside the reconstruction surface, but differ-
ent fields E1,H1 inside. The formulation is thus am-
biguous and the desired physical current densities in (1),
corresponding to Love’s equivalence principle, can only
be obtained if additional a priori information is imposed.
This fact was first noted by Persson et al. [2] and a more
detailed treatment was presented by Araque Quijano and
Vecchi [13]. The desired currents in (1) are obtained by
inforcing the a priori information that the fields E1, H1

radiated by (JS ,MS) inside S must be zero [2, 12, 13].
The formulation of the required boundary condition for
the electric and magnetic fields leads to the equation

−η0n̂× LJS +
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for r ∈ S. These expressions are referred to as the bound-
ary condition equation.

3. DISCRETIZATION

The surface of reconstruction is discretized using curvi-
linear patches of up to fourth order. The electric and mag-
netic surface currents on each patch are expanded as
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where X = [J,M], au
mn

and av
mn

are unknown coeffi-
cients, Mu and Mv are the expansion orders along the
u- and v-directions, and B

u

mn
and B

v
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are u- and v-

directed vector basis function defined as
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Herein, au and av are the covariant unitary vectors and
Js(u, v) = |au × av| is the surface Jacobian. In (6),
the polynomials Pn(v) along the direction transverse to
the current flow are chosen to be Legendre polynomials
due to their nice orthogonality properties. In the direction
along the current flow, modified Legendre polynomials
[14] are used since they allow the normal current conti-
nuity to be enforced. The current expansion above is then
inserted in the data equation (2). In order to arrive at a
matrix equation, we choose two orthogonal test vectors
(θ̂, φ̂) at each measurement sampling point. This readily
leads to the matrix equation

Āx = b, (7)

where x is a vector of unknown basis function coeffi-
cients, b contains samples of the measured field, and Ā

is an M ×N matrix with elements representing the field
radiated by a particular basis function.

The current expansion is also inserted in the boundary
condition equation (4). In order to arrive at a matrix equa-
tion, we choose the testing functions

T
u

mn
(u, v) = a

u �Pm(u)Pn(v) , (8a)

T
v

mn
(u, v) = a

v �Pm(v)Pn(u) . (8b)

In this expression, au and a
v are the contravariant uni-

tary vectors. This testing scheme is quasi-Galerkin in the



sense that the basis and testing functions span the same
polynomial space on rectangular patches but not in the
general case. The contravariant unitary vectors are or-
thogonal to the covariant unitary vectors and it was found
that this choice performed better than pure Galerkin test-
ing. By taking the inner product of the testing functions
and (4), we arrive at the matrix equation

L̄x = 0, (9)

where L̄ is a P × N matrix, whose elements represent
the field radiated by a particular basis function, weighted
by a particular testing function. The matrix is typically
chosen to be square so that P = N .

The discretization described above differs from previous
published works in two important aspects:

1. The geometry and unknown currents are represented
by smooth polynomial functions. This results in im-
proved efficiency, enhanced accuracy, and better res-
olution properties of the algorithm (see Section 5.3).
Previous works are limited to flat patches and piece-
wise linear basis functions.

2. The testing of the boundary condition operator is
performed on the actual surface of reconstruction.
The previous works that include the boundary con-
dition operator [2, 12, 13] employed an λ/10 in-
ward offset version of the surface of reconstruction,
and Dirac delta functions were used on this surface.
This approach introduces ill-conditioning of the ma-
trix L̄, more testing functions are needed, and the
inward offset surface is not readily available in prac-
tical cases.

4. REGULARIZATION

The data equation (2) is a linear Fredholm integral equa-
tion of the first kind (IFK) with compact kernel [15]. It
is well-known that its solution is ill-posed in the sense of
Hadamard [16],[17, p. 4], so that small perturbations of
data due to noise cause arbitrarily large perturbations of
the solution.

The matrix equation (7) represents a discrete ill-posed
problem and the singular values of A therefore decay to
zero without any gap in the spectrum [17, p. 20]. To ob-
tain a well-posed solution to the problem min �Āx−b�2
regularization is needed by imposing a priori information
about the solution. In this work we suggest to use the
a priori information obtained from the fact that the de-
sired currents on the reconstruction surface should satisfy
the boundary condition, that is, �L̄x�2, obtained from
the boundary condition equation (4), should be small.
Hence, the chosen regularization method not only ensures
that the desired Love’s equivalent currents are obtained,
but also serves the purpose of making the solution well-
posed. This differs from previously published works, as
will be explained below in Section 4.2.

4.1. Truncated Generalized Singular Value Decom-
position

One proper tool for solving the considered regulariza-
tion problem is the generalized singular value decom-
position (GSVD) of the matrix pair (Ā, L̄). The GSVD
constitutes a generalization of the SVD, and takes on the
form [18, p. 493]

Ā = Ū

�
Σ̄ 0

0 ĪN−P

�
X̄

−1, L̄ = V̄(M̄,0)X̄−1,

(10)
in which Ū has dimension M × N , V̄ has dimension
P × P , X̄ = (x1, . . . ,xn) has dimension N × N , and
ĪN−P denotes the identity matrix of dimension N − P .
Moreover, Σ̄ and M̄ are P × P diagonal matrices,

Σ̄ = diag(σ1, . . . ,σP ), (11)
M̄ = diag(µ1, . . . , µP ), (12)

where 0 < σ1 ≤ · · · ≤ σP ≤ 1, 1 ≥ µ1 ≥ · · · ≥ µP >
0, and σ2

i
+ µ2

i
= 1. Note that Ū, V̄, and Σ̄ are different

from the matrices with the same symbols usually used in
the SVD of Ā. The existence of the GSVD in the form
(10) requires that rank

��
Ā

L̄

��
= N and rank

�
L̄
�
= P ,

which is the case for the problem considered here. When
L̄ equals the identity matrix, the GSVD is equivalent to
the SVD of Ā.

The truncated GSVD (TGSVD) regularized solution xk

is introduced in [18, p. 494] as a straightforward exten-
sion of the truncated SVD (TSVD), in which the compo-
nents in the solution corresponding to the P − k smallest
σi are neglected,

xk =
P�

i=P−k+1

u
H

i
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σi

+
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i
· xi, (13)

k = 1, . . . , P . The last term herein, in which xi denotes
the i’th columns of X̄, belongs to the null space of L̄

and equals zero when L̄ is square, that is, when P = N .
Expression (13) reveals the ill-posedness of the problem,
since small perturbations in b caused by noise will be am-
plified by the division of the small values of σi. When the
regularization parameter k is small, no such small values
of σi are included, and an over-regularized solution is ob-
tained. On the other hand, when k is large, the solution
is under-regularized. The determination of the optimum
regularization parameter is discussed in Section 4.3. An-
other well-suited regularization method for the problem
under consideration is that by Tikhonov in general form
in which Ā and L̄ are again treated separately. This gen-
eral form of the Tikhonov regularization differs from the
commonly applied simplified Tikhonov in standard form
where L̄ implicitly equals the unit matrix. The applica-
tion of Tikhonov regularization to the problem at hand is
treated in [19].



4.2. Regularization in Standard Form

The regularization problem in which L̄ equals the identity
matrix ĪN is said to be in standard form [18]. This formu-
lation enforces the a priori information that �x̄�2 should
be small (minimum norm solution) and therefore tends
to exclude components of x belonging to the numerical
null space N (Ā) of Ā. The standard form formulation
is used in previous works on the considered inverse prob-
lem [1], [3]-[11] in which the boundary condition is not
enforced. Love’s equivalent surface current densities are
not obtained from the minimum norm solution since this
solution requires components in N (Ā), as also noted by
[12].

In [2, 12, 13] this boundary condition is taken into ac-

count by forming a new matrix
�
Ā

L̄

�
and applying reg-

ularization in standard form on this matrix with the un-
derlying strategy to eliminate the ambiguity of the for-
mulation due to the internal fields E1,H1 by forming the
new matrix and subsequently making the solution stable
by the regularization. The approach taken in this paper
is different in that we keep the data matrix Ā and the
boundary condition matrix L̄ separate and use the latter
to combat both the formulation ambiguity and the insta-
bility. Section 5.2 below compares the performance of
these two approaches.

4.3. Choosing the Optimum Regularization Param-
eter

Much work has been reported in the literature on deter-
mining the optimum regularization parameter for discrete
ill-posed problems. One of the most reliable approaches
is the L-curve method [20]. The key idea in this method
is to realize that the solution norm η = �L̄xk�2, plotted
versus the residual norm δ = �Āxk − b�2 as function
of k in a logarithmic scale, is a monotonically increasing
function and forms the shape of an L. An example of such
an L-curve is shown in Fig. 1. When k is small, the so-
lution is over-regularized, and (η, δ) is on the lower-right
part of the L-curve. Similarly, when k is large, (η, δ) is
on the upper-left part. The optimum value of k is that
corresponding to the L-curve corner.

5. NUMERICAL RESULTS

To validate our algorithm two canonical cases are con-
sidered. These cases are described in this section and
Sections 5.1 - 5.3 then illustrate various properties of the
algorithm.

Case 1 involves an array of five electric/magnetic
Hertzian dipoles with a pseudo-random volumetric dis-
tribution as shown in Fig. 2. The far field radiated by
the array is calculated and used as input to the INV-MoM

Figure 1. Example of L-curve. The optimum regular-
ization parameter is the value of k corresponding to the
corner.

Figure 2. The considered array consisting of five
Hertzian dipole elements. The x-axis is in red, the y-axis
in green, and the z-axis in blue. Information about the
elements are given in Tab. 1.

Position Orientation Excitation Type
(x, y, z) [λ] (θ,φ) [deg] [A]
(0, 0, 0) (20,40) 1� 0◦ Electric

(−0.1, 0, 0) (-10,0) 1� 30◦ Magnetic
(0.1, 0, 0) (45,30) 1� 0◦ Electric
(0, 0.1, 0) (90,0) 1� 0◦ Electric
(0,−0.1, 0) (90,0) 1� 0◦ Magnetic

Table 1. Position, orientation, excitation, and type of the
five dipoles in Fig. 2.

method. The electric and magnetic surface current densi-
ties, n̂ ×H and −n̂ × E, respectively, are reconstructed
on a sphere with centre at the origin and radius 0.3λ.

Case 2 involves an array of three y-polarised Huygen’s
sources located in the xy-plane as shown in Fig. 3. The
separation distance d is here chosen to be λ/4. The three
sources are enclosed in a box of height λ/5 and the field is
observed on the top face of the box, which is at z = 0.1λ.

For both cases the relative root mean square (RMS) error,



Figure 3. Three Huygen’s sources separated by the dis-
tance d = λ/4.

RMSE , between reconstructed and exact electric fields,
Erec and Eexact, is determined by

RMSE =

��
S
|n̂×Erec − n̂×Eexact|2 dS�

S
|n̂×Eexact|2 dS

, (14)

and RMSH is calculated similarly. Uncorrelated Gaus-
sian noise, specified by the signal to noise ratio SNR, is
added to the real and imaginary parts of the calculated far
fields before performing the reconstruction.

5.1. Convergence of RMS Error

The higher-order discretization implies that the unknown
surface current densities can be more accurately de-
scribed by increasing the polynomial order of the dis-
cretization. Consequently, the relative RMS error should
decrease as the polynomial order increases. To illustrate
that this is indeed the case, RMSE and RMSH are calcu-
lated for Case 1 with no noise as function of the polyno-
mial order using the TGSVD solution xk from (13). The
results are shown in Tab. 2. From these results it is seen
that the RMS error decreases by approximately a factor
of 10 when the polynomial order is increased from 1 to 2
and another factor of 10 when increasing the order from
2 to 3. The error also decreases when going from 3 to
4, but for polynomial order 5 the RMS error is higher
than that for polynomial order 3. The convergence of the
RMS error breaks down because the discretized problem
becomes so ill-posed that an accurate solution no longer
can be obtained. The lowest relative RMS error obtained
by this method is about 0.3 percent.

5.2. Impact of Noise

Tab. 3 shows the relative RMS errors RMSE and RMSH

for Case 1 for various SNRs when solving the standard
form problem from [2, 12, 13] using TSVD, as described
in Section 4.2, and also the general form problem in (13)
using TGSVD regularization. Polynomial order 3 is used

for the discretization. In both cases the L-curve method is
applied to determine the optimum regularization param-
eter. It is seen that the error increases with decreasing
SNR for both methods, as expected. It is also observed
that the regularization method suggested in this work is
very robust against noise and that it performs better than
the previously suggested method employed in [2, 12, 13]
for any polynomial order. When the TGSVD is used, the
problem remains solvable even for severe noise levels.

5.3. Resolution of INV-MoM

We now investigate whether distinct sources separated by
a small electrical distance can be accurately resolved by
the INV-MoM. Case 2 is suitable for this purpose and the
box-shaped surface of reconstruction is discretized using
16 patches. The number of unknowns and the required
number of far field sampling points are listed in Tab. 4.
The electric field on the z = 0.1λ plane exhibits a rapid
variation and even the best-possible approximation with
the given set of basis functions may not be an accurate
representation of the exact fields. To illustrate this, we
show both the exact field and the best possible approxi-
mation with the current set of basis functions. The latter
solution has been obtained by forward MoM. All plots in
this section shows the y-component of the electric field.

d = λ/4
Reconstruction surface (box) λ/2× λ/2× λ/5
Patches 16
Polynomial order 5
Unknowns 1440
Far-field sampling points 720

Table 4. Parameters for the two cases with three Huy-
gen’s sources separated by a distance d.

The results for a separation of λ/4 are presented in Fig. 4.
The exact field is shown in Fig. 4a whereas Fig. 4b shows
a projection of the exact field onto the fifth-order basis
functions. Therefore, Fig. 4b shows ideal reconstructed
field for the present discretization. It can be seen by com-
paring Figs. 4a and Fig. 4b that the 5th-order polynomial
expansion has problems along the horizontal center line.
This problem can be recognized in the reconstructed field
for noise-less far field data which is shown in Fig. 4c.
The reconstructed field is in good agreement with the best
possible field for the present discretization in Fig. 4b, al-
though the three sources appear slightly closer together.
The reconstructed field for noisy far field data (SNR=60
dB) is shown in Fig. 4d. The two lower sources can no
longer be distinguished whereas the third source is clearly
identifiable.

The case reported here, as well as other cases reported
in [19], indicate that there is no hard limit on the resolu-
tion. In the noise-less condition, the field can be recon-
structed nearly without loss of information and sources



1 2 3 4 5
RMSE , TGSVD 0.18 0.02 0.006 0.002 0.04
RMSH , TGSVD 0.28 0.03 0.008 0.003 0.06

Table 2. RMSE and RMSH as function of polynomial order for Case 1.

Noiseless 50 dB 40 dB 30 dB 20 dB
RMSE , std. form 0.02 0.07 0.20 0.62 1.94
RMSE , gen. form 0.006 0.07 0.08 0.19 0.20
RMSH , std. form 0.03 0.07 0.20 0.64 2.02
RMSH , gen. form 0.008 0.06 0.07 0.17 0.19

Table 3. Relative RMS errors for various SNRs when using the standard-form regularization method from [2, 12, 13] (std.
form) and the general-form method of this paper (gen. form).

can be clearly separated, although small artifacts may oc-
cur. For noisy data, sources separated by λ/4 may or
may not be identifiable. It is interesting to note that tra-
ditional microwave holography typically operates with a
minimum pixel size of λ/2. The entire field of view in
Fig. 4 would correspond to a single pixel when using mi-
crowave holography.

(a) (b)

(c) (d)

Figure 4. Electric field from three Huygen’s sources sep-
arated by a distance of λ/4. (a) The reference field. (b)
The best possible field for the present discretization. (c)
Field reconstructed from far field data without noise. (d)
Field reconstructed from far field data with SNR=60 dB.

6. CONCLUSIONS

This paper has presented an improved INV-MoM that
uses curved patches and higher-order basis functions,
quasi-Galerkin testing of the boundary condition equa-
tion, as well as a robust regularization scheme based on
the TGSVD and an automated method for determining
the optimum regularization parameter. The performance
of the algorithm has been tested on a few canonical cases
and the relative RMS error obtained is 1-2 orders of mag-
nitude lower than previously published works. In addi-
tion, it was shown that the method can reconstruct the
field from discrete sources with a separation smaller than
λ/2, even when starting from far-field data with practi-
cal noise levels. Further investigations, including com-
parisons with low-order methods and other regularization
schemes, will be published in [19].
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