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Abstract—Surface shaping of reflector antennas for creating
a contoured beam is an ubiquitous task in the design of
modern communication satellites. In this paper, we highlight
two major improvements to the state-of-the-art that provides
a major increase in computational efficiency — a modern mini-
max optimisation algorithm for large-scale problems and the
implementation of analytical derivatives for simultaneous shaping
of the surface of both reflectors in a dual reflector system.

I. INTRODUCTION

Many modern communication satellites require contoured
beams in order to provide coverage to a particular region of
the Earth. The most common approach to achieving contoured
beams for geostationary satellites is the use of reflector antenna
systems with shaped surfaces.

Conceptionally, the surface shaping is done by solving
an optimization problem involving a function F (X) where
F (X) computes the performance of the antenna system for
the specific surface described by the variables X , which
define the surface of the reflector(s). Many realistic systems
are electrically quite large, and need to be optimized over a
range of frequencies, rendering analysis by full-wave methods
outside the scope of modern computing. Further, solving the
optimization problem is extremely difficult without access to
analytical derivatives, which in general cannot be achieved
with full-wave methods. Instead, asymptotic methods can
be used, and by applying Physical Optics (PO), optionally
supplemented by the Physical Theory of Diffraction (PTD),
one can find the derivative matrix (also called the Jacobian
matrix) of F analytically and efficiently.

Mathematically, the optimization problem to be solved can
be described as

min
X

. F (X) = max
(
F1(X), F2(X), . . . , Fm(X)

)
, (1a)

s.t. AX ≤ B. (1b)

Here, Fi denote the difference between the desired level of
the quantity (gain, XPD, e.t.c.) being optimized and the actual
value of the quantity at the i’th point in the coverage region.
Thus, if e.g. F62 = 0.1, this means that the quantity at the
62nd position is 0.1 dB worse than the desired level. Further,
one can choose to specify constraints using the A matrix,
e.g. to constrain the surface from becoming too difficult to
manufacture.

II. IMPROVEMENTS

The optimisation problem (1) can be very challenging, in
part because of the non-linearity of F and in part because
of the sheer size of the problem — it is not uncommon for
the number of variables N to be several thousand, and the
number of stations and constraints can be several hundreds of
thousands. Further, each function evaluation can take several
minutes, and the accuracy requirements are of order 10−6.

A. Optimisation

Because of the costly evaluation of the objective function,
choosing the correct methodology for the optimisation is
crucial. In a recent development effort, we implemented a
new solver based on the general framework described by
Hald in [1], but applying modern convex optimization for
the interior solver in a trust-region framework. The result is
an algorithm with much higher speed and less memory use,
particularly for cases with a large number of stations, variables
and/or constraints. Further, when constraints are involved, a
completely new solver has been written to determine a feasible
starting point (or to rule out feasibility), vastly improving the
feasible point algorithm used in Hald’s work.

The algorithm has been discussed previously in the literature
for single reflector systems [2] and reflectarrays [3]. However,
its use for subreflector optimization is vastly different — in
contrast to most single reflector systems, the time to evaluate
the objective function is very high, and in contrast to reflec-
tarrays, the number of unknowns is fairly modest. Thus, while
the benefits of the new algorithm offer a nice improvement,
particularly for cases with a large number of constraints, we
wanted to further accelerate the computations.

B. Subreflector Derivatives

With the optimisation routine vastly improved, we turned
our attention to accelerating the evaluation of the objective
function F . One of the most time-requiring processes was the
computation of derivatives for dual-reflector systems, because
previously only the derivatives for the main reflector were
available analytically. This meant that the derivatives of the
subreflector surface had to be computed numerically by using
the forward difference approximation — with a large number
of variables, this process was very time-consuming.

To avoid this, we derived the exact analytical derivatives
for both PO and PTD near-field and far-field expressions for
the double-bounce interactions [4] occuring in dual-reflector



Fig. 1. The main coverage (in green) with high gain and low XPD goals
over Brazil as well as (in red) the gain-suppresion region over the continental
US. The field resulting from the optimization is shown superimposed with the
−1.5,−3,−5 dB curves shown the contoured beam on Brazil as well as the
−35 and −38 dB curves contoured around the US due to the gain-suppresion.

TABLE I
PARAMETERS FOR THE SYSTEM.

Frequency 12.49 GHz
Sub reflector, minor x major diameter 0.29 m x 0.3 m
Main reflector, minor x major diameter 2 m x 2 m
Feed taper at sub rim -18 dB

systems. By computing these derivatives analytically, the cost
of finding the Jacobian matrix is reduced significantly, partic-
ularly as the number of unknowns increase.

III. RESULTS

All results in this section have been produced on a Macbook
Pro 2013 with 16 GB RAM.

To demonstrate the performance improvements, we consider
a dual reflector system onboard a geostationary satellite lo-
cated at −70◦ longitude, and optimize for a Brazil coverage
with goals set to provide high gain and low XPD in the
coverage while suppresing the gain over the continental US.
The coverage is shown in Figure 1, and m = 20668 stations
are required to sufficiently characterize the coverage. The
fundamental parameters of the antenna system are shown in
Table I.

After some initial optimization runs to get a good starting
point, we have a total of N = 1442 surface variables, of which
slightly less than half are on the subreflector. We then run
200 iterations of the new and old minmax algorithms, both
with the new analytical subreflector derivatives and the old
numerical derivatives. The results are summarized in Table II,
under the heading ”No Constraints”. Clearly, the use of the

TABLE II
COMPUTING TIMES IN MINUTES OF THE CASES IN SECTION III.

Algorithm Numerical Analytical
No Constraints

Hald [1] 297 91
New 262 65

Constraints
Hald [1] 364 173
New 266 71

new algorithm presented in this paper (analytical derivatives,
new optimization algorithm) leads to a significant speed-up
relative to version 6.1 of POS [5] (numerical derivatives, Hald
optimization algorithm) — a factor of 4.5 (297 min/65 min).
The optimized value is the same for all four optimization runs.

We note that in this case, the biggest performance
boost comes from the use of analytical derivatives on the
subreflector. The improved optimization algorithm leads to
about a 30% reduction in computing time on its own, but the
use of analytical derivatives leads to a factor of 3-4 reduction
in time compared to numerical derivatives.

A. Constraints

For demonstration purposes, we also add constraints to limit
the local surface curvature to ensure that one can actually man-
ufacture the optimized surface. A total of 61344 constraints are
required. We run 200 iterations from the same starting point as
when we did not have constraints — the results are summarized
in Table II under the heading ”Constraints”. Again, we see a
significant improvement in the new algorithm (71 min) versus
POS 6.1 [5] (364 min), a factor of 5.1. The value is the same
for all four optimization runs. As the table shows, the new
derivatives lead to about a factor of 2-3 reduction in computing
time, while the new optimization algorithm leads to a factor
of 2 reduction as well.

IV. CONCLUSION

Surface optimization of dual reflector systems for contoured
beams is a computationally challenging, but ubiquitous, part
of the design cycle for many modern telecommunications
satellite. By improving the optimization algorithm, as well as
by implementing analytical expressions for the derivatives on
the subreflector, we have been able to advance the state-of-
the-art, reducing the optimization time by a factor of 5.
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