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Abstract—We present recent advances in the RF modeling
of electrically large antennas and platforms, with an emphasis
on reflector antennas and satellite platforms. The Higher-Order
Multilevel Fast Multipole Method (HO MLFMM) was introduced
recently in the commercial software tool GRASP, and this
algorithm is employed in this paper due to the very low memory
requirements and the need for very high accuracy. We show that
the memory distribution of HO MLFMM is different from the
typical low-order MLFMM, thereby enabling a more efficient
out-of-core solution which allows very large problems to be
solved with modest memory requirements. We also investigate
the challenging problem of MLFMM-based computation of
waveguide scattering parameters when several horn feeds are
mounted on large satellite platforms. We show that the use of a
Block GMRES method provides a faster and/or more accurate
solution than the standard GMRES solution method.

Index Terms—Multi-Level Fast Multipole Method, higher-
order Method of Moments, full-wave methods, commercial soft-
ware.

I. INTRODUCTION

A fast and accurate full-wave method for electrically large
problems is needed in several applications, including satellite
communication systems or scientific missions. Space appli-
cations typically require very high accuracy and a desired
dynamic range exceeding 100 dB is not uncommon. At the
same time, the technological advances imply that multiple
antenna systems can be tightly packed on the satellite plat-
form, thus requiring full-wave based computation of the EM
interaction between several antenna systems and the platform.
The demands from the industry require that larger systems
must be analysed in a shorter time, and with higher accuracy
than previously possible. Furthermore, there is a need for
computation of the entire scattering matrix when multiple
antenna systems are colocated on the same platform.

In this paper, we show that the Higher-Order MLFMM
introduced recently [1] is capable of reaching a very high level
of accuracy with a very small memory footprint. Therefore,
the HO MLFMM is more suitable for analysis of electrically
large platforms than a standard MLFMM implementation [2].
At the same time, the high current expansion order implies
that a relatively large part of the memory is occupied by the
near-interaction matrix whereas the memory required for the
MLFMM acceleration (basis function patterns, group patterns,
translation operators, etc) occupies a smaller part of the mem-
ory. This property is important when an out-of-core MLFMM
solution is applied to extend the range of solvable problems

on a given computer hardware. We investigate the memory
distribution of the HO MLFMM and illustrate the performance
of the out-of-core HO MLFMM which was recently made
available in the GRASP software.

Computation of scattering matrices, e.g. for accurate as-
sessment of coupling between multiple feed horns on an
electrically large platform, can be efficiently performed with
HO MLFMM. However, the MLFMM problem must be solved
for N right hand sides (RHS) to compute an N⇥N scattering
matrix, which implies that the iteration time can be quite
long. Several approaches for MLFMM solutions with multiple
RHS have been developed for monostatic RCS applications but
these methods are not applicable when there is no correlation
between the various RHS. In order to reduce the iteration time
for scattering matrix computations, we have introduced the
block GMRES Krylov solver into the HO MLFMM algorithm.
We show that this solver reduces the iteration time and
provides higher accuracy at the same time.

II. MEMORY AND CPU REQUIREMENTS OF HO MLFMM

The HO MLFMM algorithm presented in [1] is able to work
with basis functions of very high order, e.g. 5th order, with
very modest memory requirements. Unlike this new algorithm,
the commonly used standard MLFMM algorithm will result
in a very high memory consumption when high expansion
orders are used, due to the larger geometrical patch sizes
employed. These properties are illustrated in Figure 1, showing
the RMS error obtained when computing the bistatic radar
cross section of a conducting sphere, using the Combined
Field Integral Equation (CFIE). The results are reported for
varying polynomial orders p and for both standard MLFMM
and HO MLFMM. For standard MLFMM, it can be seen that
the p = 2 curve is closest to the lower left corner of the
plot and hence, second order basis functions provide the best
trade-off between accuracy and memory. In contrast to this,
the blue curves are almost identical for p > 1, indicating that
the HO MLFMM reduces the memory requirements for all
expansion orders, but in particular for high expansion orders
that can be applied without a memory penalty. Figure 1 also
shows that HO MLFMM is far more suitable than standard
MLFMM when high solution accuracy is needed, since the
error can be reduced by one order of magnitude with only a
small increase in memory.

The HO MLFMM memory consumption reported in Figure
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Fig. 1. The total memory for varying RMS error and polynomial order
p, using CFIE, with the standard MLFMM algorithm and the modified HO
MLFMM algorithm.

1 shows that all expansion orders higher than p = 1 leads to
roughly the same memory-versus-accuracy tradeoff. However,
there is still a strong motivation for using the highest possible
expansion order which can be understood by studying the CPU
time required for the iterative solution reported in Figure 2.
The CPU time is normalised to the time required for the fastest
run and we report the total iteration time, implying that the
curve shows the combined effect of a varying time per matrix-
vector product as well as a different number of iterations. It
can be observed that there is a direct relation between the
expansion order and the time required for the iterative solution:
A high expansion order leads to the shortest possible iteration
time. In addition, we note that a high expansion order is far
more suitable than a low expansion order when a high solution
accuracy is needed, because the curve corresponding to the
highest order is almost flat.

III. OUT-OF-CORE HO MLFMM SOLVER

The favorable memory and CPU consumptions of the HO
MLFMM algorithm imply that electrically larger problems
than previously possible can be solved. Nevertheless, there is
a strong demand for solving even larger problems, and often
problems requiring more memory than available. This need
can be addressed by developing an Out-of-Core (OoC) solver
that employs disk storage instead of RAM, thereby reducing
the peak memory requirement at the expense of a longer
solution time. Direct OoC solvers have been developed for
non-accelerated higher-order MoM solvers [3] but these cannot
handle electrically large problems due to the poor scaling with
problem size. Low-order MLFMM solvers with OoC capabili-
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Fig. 2. Time per matrix-vector product normalised to the time for the fastest
run. Each curve corresponds to a fixed polynomial order (p= 1, 2, 3, 4, 5) and
results are shown for the standard algorithm (red) and the modified algorithm
(blue).

ties have also been developed, e.g. [4], but as demonstrated in
the previous section, low-order MLFMM requires significantly
more memory and longer iteration time than HO MLFMM. In
addition, we note the following difference between the low-
order and the higher-order MLFMM:

• For low-order MLFMM, approximately 50% of the mem-
ory is used for the near matrix and the basis functions pat-
terns. The remaining part of the memory os occupied by
group patterns, translation operators, and other MLFMM
data that is needed several times in each iteration.

• For HO MLFMM, approximately 75% of the memory is
used for the near matrix and the basis functions patterns.
Since a larger part of the memory is occupied by data
that is only needed once per iteration, the HO MLFMM
is more suitable for an OoC solution than low-order
MLFMM.

The difference outlined above and the expansion order have a
direct impact on the amount of data that can be stored on disk
and the data that must be kept in RAM. This is illustrated in
Figure 3 that shows the amount of RAM needed when the OoC
HO MLFMM is used to solve the same test case as studied
in the previous section. Hence, the plot is similar to Figure 1,
but here we report only the memory that cannot be swapped
to disk when the OoC algorithm described in [5] is used. Two
observations can be made:

1) The memory consumption decreases significantly as the
expansion order increases.

2) The curve for the highest expansion order p = 5
is almost flat, indicating that the memory requirement
is independent of the solution accuracy. This strong
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Fig. 3. Memory (RAM) required by the out-of-core HO MLFMM solver for
various expansion orders.

property implies that high accuracy can be obtained on
modest computers.

The last observation above can be understood by considering
the effect of improving the accuracy by p-refinement instead
of h-refinement. When the polynomial order p is increased,
additional basis functions will be defined on each patch
whereas the size of the patches and the MLFMM grouping
are unchanged. The increased number of basis functions has
a direct impact on the lowest level of the MLFMM tree, i.e.,
the size of the near-matrix, the preconditioner memory, and
the basis functions patterns. However, all these quantities are
placed in OoC storage. The data associated with the higher
MLFMM levels are kept in RAM but these are unchanged
when doing p-refinement. Therefore, the OoC HO MLFMM
allows very high solution accuracies with very little impact on
memory requirements.

The performance of the OoC algorithm is now illustrated by
considering a paraboloidal reflector with different diameters
between 50� and 400�. The radiation patterns have been
computed with HO MLFMM on a laptop with 16 GB RAM.
The memory and CPU time are reported in Table I for both the
in-core and the out-of-core solution. It can be observed that
the required RAM is between 5 and 10 times lower with the
OoC solver, at the expense of a longer runtime. This example
illustrates that the OoC HO MLFMM is very suitable for
solving electrically large problems with high accuracy, using
only a modest computing platform.

IV. BLOCK GMRES FOR HO MLFMM WITH MULTIPLE
RIGHT-HAND SIDES

When computing the currents excited on a structure by
multiple distinct excitations, e.g., when the scattering matrix of

TABLE I
OUT-OF-CORE PERFORMANCE ON A PARABOLOIDAL REFLECTOR WITH

DIAMETER D.

D [�] In-core Out-of-Core
Memory [GB] Time Memory [GB] Time

50 0.68 1:11 min 0.11 1:37 min
100 2.60 5:05 min 0.32 6:43 min
200 10.25 24:11 min 1.16 40:00 min
400 20.08 N/A 4.42 4:11 hrs

Fig. 4. Mesh of the offset D = 100� paraboloidal reflector, illuminated by
an axially corrugated horn, used as a test case for the Block GMRES solver.
Note that each patch has roughly 1.5� sidelength.

a multiport antenna system is required, a system of equations
with multiple right-hand sides is set up

Z I = V (1)

where V and I have N rows and P columns. When N is
large, these problems are typically solved by P consecutive
applications of an iterative linear solver. In some applications,
the convergence for the i+1’st right-hand side can be improved
by using information from the solution of the i’th right-hand
side. Unfortunately, these tricks cannot be applied when the
excitations are uncorrelated. A more thorough approach is
the use of Block Krylov solvers - these solve all P systems
simultaneously, requiring P matrix-vector products with Z
per iteration, but compressing all the information from those
P systems into one Krylov subspace. One such method, the
Block GMRES, is described in detail in [6] and this method
has been implemented in the HO MLFMM solver.

As an example of the properties of the Block GMRES, we
consider an offset paraboloidal reflector with circular projected
rim, illuminated by an axially corrugated horn designed for
use in the 20-30 GHz range. We fix the frequency at 30 GHz,
which yields an overmoded horn, and therefore we include
20 waveguide modes in the scattering matrix computation, to
ensure that the higher-order modes are not detrimental to the
performance. The scenario is illustrated in Figs. 4-5, and the
total number of right-hand sides in the system is P = 20.

The performance of the Block GMRES solver is contrasted



Fig. 5. Close-up of the axially corrugated horn from Fig. 4.

TABLE II
NUMBER OF MATRIX-VECTOR MULTIPLIES

Number Number of Matrix-vector products
Method of runs iterations per iteration Total
GMRES 20 13-22 1 354
Block GMRES 1 14 20 280

with the standard P applications of non-restarted GMRES
in Table II, with the relative residual tolerance of 10�3.
The key performance parameter is the number of matrix-
vector products required for all P right-hand sides to achieve
convergence - for the standard GMRES, this is 354, while
Block GMRES is 280. Thus, the Block GMRES reduces the
total number of matrix-vector products with about 20% for
this specific case.

An additional benefit, however, is that the use of Block
GMRES often leads to more accurate solutions for many of
the P systems. The Block GMRES solver is stopped when
all P systems have achieved the requested relative residual
tolerance - at that point, some of the systems might have
converged several iterations ago. Figure 6 shows the achieved
relative residual error, demonstrating that not only does the
Block GMRES require fewer iterations for all systems to
achieve convergence, the final achieved result will also be
much more accurate - some of the systems have converged
even at the 10�4 threshold. This implies that the scattering
matrix computation is both faster and more accurate.

V. CONCLUSION

We have shown that the HO MLFMM algorithm is very
suitable for electrically large problems due to a very low
memory and CPU requirement. The difference between the
commonly applied low-order MLFMM and HO MLFMM is
particularly pronounced when high accuracy is desired, be-
cause a higher expansion order provides a significant reduction
of the discretisation error while resulting only in a minimal
increase of the required memory. We have also shown that the
HO MLFMM results in a relatively large near-matrix which
makes the algorithm suitable for an out-of-core solution. When
the out-of-core HO MLFMM is used, a very high solution
accuracy can be obtained by p-refinement without affecting the
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Fig. 6. Achieved relative residual convergence for the P = 20 right-hand
sides.

required in-core memory. Finally, we have shown that a Block
GMRES solver can be used to reduce the iteration time when
the HO MLFMM is applied for computation of scattering
matrices, e.g., when multiple horn antennas are embarked
on an electrically large satellite platform. The algorithmic
improvements of the HO MLFMM discussed in this paper
have recently been introduced in the commercial software
GRASP.
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