
5. CONCLUSION

In this study, actively and passively excited sinusoidal two types of
antenna, which are PCB strip and microstrip antenna are investi-
gated at the operating frequencies of K and millimeter wave bands.
Passively excited sinusoidal antenna is applied to PCB strip and
microstrip structures for the first time. It is aimed to create more
rigid and smaller-sized sinusoidal antennas than the wire type. It is
shown that the sinusoidal PCB strip antennas can be formulated by
the same manner of wire type of antennas. The measured patterns
of investigated PCB strip antennas are compared also with calcu-
lated patterns obtained from a written MATLAB code. The mea-
sured patterns of actively excited antennas are compared with the
simulated ones obtained from HFSS program as well. The reduc-
tion in the size of antenna dimensions are achieved 50% for
microstrips and 20% for PCB strip antennas. Phase velocity cal-
culated for PCB strip structures are 15% smaller than wire struc-
tures. This reduction in the phase velocities of PCB strip antennas
is high because the thickness of PCB strip is large (approximately
1 �). The advantage of passive excitation, an array can be com-
posed by repeating a number of sinusoidal parts. The electromag-
netic energy is coupled to sinusoidal parts by a long Goubau line
in this case.

REFERENCES

1. W. Rothman and N. Karas, The sandwich wire antenna: A new type of
microwave line source radiator, IRE Int Convention Record 5 (1957),
166–172.

2. W. Rothman and N. Karas, Printed circuit radiators: The sandwich
wire antenna, Microwave J 2(1959), 29–33.

3. V.G. Trentini, Flachantenne mit periodisch gebogenem Leiter, Fre-
quenz 14 (1960), 239–243.

4. K. Chen, Sandwich-wire antenna, IRE Trans Antenna Prop 10 (1962),
159–164.

5. H.E. Green and J.L. Whitrow, A new analysis of the sandwich-wire
antenna, IEEE Trans Antenna Prop 19 (1971), 600–605.

6. A.O. Salman, D. Dibekci, S. Gavrilov, and A.A. Vertiy, The millime-
ter-wave radiation of a traveling-wave sinusoidal wire antenna, IEEE
Trans Antenna Prop, editing.

7. G. Goubau, Surface waves and their application to transmission lines,
J Appl Phys 21 (1950), 1119–1128.

8. A.O. Salman, D. Dibekci, S. Gavrilov, and A.A. Vertiy, The millime-
ter-wave radiation properties of a novel wire antenna for the security
fence radar, IEEE Trans Antenna Prop, editing.

9. A.A. Vertiy, S.P. Gavrilov, I.V. Voynovskyy, and S. Ozbek, Security
perimeter fence for littoral protection, Proceedings of New Concepts
for Harbour Protection, Littoral Security and Shallow-Water Acoustic
Communication, 3–8 June, Istanbul, Turkey, 2005, pp. 199–208.

10. J.R. James, P.S. Hall, and C. Wood, Microstrip antenna theory and
design, Peter Peregnus, London, 1986, pp. 125–127.

11. L. Safai, A.A. Sebak, Radiation characteristics of microstrip serpent
antennas, Antenna Prop Soc Int Symp 22 (1984), 55–57.

12. C. Wood, Curved microstrip lines as compact wide band circularly
polarized antennas, Microwaves Opt Acoust 3(1979), 5–13.

© 2008 Wiley Periodicals, Inc.

A SINGULARITY EXTRACTION
TECHNIQUE FOR COMPUTATION OF
ANTENNA APERTURE FIELDS FROM
SINGULAR PLANE WAVE SPECTRA

Cecilia Cappellin,1,2 Olav Breinbjerg,1 and Aksel Frandsen2

1Ørsted�DTU, Technical University of Denmark, DK-2800 Kgs.
Lyngby, Denmark
2TICRA, Læderstræde 34, DK-1201 Copenhagen K, Denmark;
Corresponding author: cc@ticra.com

Received 2 October 2007

ABSTRACT: An effective technique for extracting the singularity of
plane wave spectra in the computation of antenna aperture fields is pro-
posed. The singular spectrum is first factorized into a product of a finite
function and a singular function. The finite function is inverse Fourier
transformed numerically using the Inverse Fast Fourier Transform,
while the singular function is inverse Fourier transformed analytically,
using the Weyl-identity, and the two resulting spatial functions are then
convolved to produce the antenna aperture field. This article formulates
the theory of the singularity extraction technique and illustrates the ef-
fect of this for an array of electric Hertzian dipoles. © 2008 Wiley Peri-
odicals, Inc. Microwave Opt Technol Lett 50: 1308–1312, 2008;
Published online in Wiley InterScience (www.interscience.wiley.com).
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1. INTRODUCTION

The plane wave expansion (PWE) is widely used in antenna
theory, as well as diffraction, imaging, and propagation theory, to
represent the electromagnetic field in source-free regions of space
as an infinite, continuous spectrum of plane waves [1–3]. The
plane wave spectrum (PWS) of the PWE is an analytic function on
the entire spectral domain, except possibly at the circular border
between the visible and invisible spectral regions where a singu-
larity may exist [4]. Since the PWS at, and close to, this circular
border corresponds to the far-field radiation pattern at wide angles,
a zero of the pattern at those angles is a necessary condition for the
PWS to be finite. Otherwise, the PWS possesses a singularity
there, and this is thus the case for most antennas.

In applications where the aperture field is calculated from the
PWS this singularity must be taken properly into account to ensure
the accuracy of the aperture field. In some cases, e.g., where the
PWS is determined from a planar near-field measurement over a
finite scan plan, the PWS is reliable only over the central part of
the visible region of the spectral domain [5], and the part of the
domain where the singularity exists must be disregarded. How-
ever, in other cases, e.g., where the PWS is determined from a
far-field measurement, a compact range measurement or a spher-
ical near-field measurement, the PWS at, or close to, the border
between the visible and invisible regions can be determined and
the singularity is thus known.

Since the PWS and the aperture field constitute an inverse
Fourier transform pair, the Inverse Fast Fourier Transform (IFFT)
is normally used for computation of the aperture field from the
PWS. However, the singularity of the PWS, though integrable,
prevents a straightforward application of the IFFT. Many singu-
larity extraction techniques for numerical integration have been
proposed, in particular for integral equation and method of mo-
ment techniques [6, 7], but here a different approach is used.

The purpose of this work is to formulate and validate a new
singularity extraction technique for the computation of antenna
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aperture fields from singular plane wave spectra. In this technique
the singular PWS is first factorized into a product of a finite
function and a singular function. The inverse Fourier transforms of
these two spectral functions are then calculated. For the finite
function this is done numerically using the IFFT, and for the
singular function this is done analytically using the Weyl-identity.
Finally, the two thus obtained spatial functions are convolved to
produce the antenna aperture field. In this work the effect of the
singularity extraction technique is applied to a simple test case to
isolate and identify the singularity and its influence on the aperture
field. However, the singularity extraction technique has been ap-
plied also to real measurements data for practical and complicated
antennas [8, 9]. The present manuscript is organized as follows: in
Section 2 the PWE theory is briefly summarized with particular
attention to the singularity. In Section 3 the singularity extraction
technique is formulated, while Section 4 illustrates its effect
through a numerical test case. All expressions are given in the S.I.
rationalized system with a suppressed e�i�t time convention.

2. THE PLANE WAVE EXPANSION

The PWE of the electric field E� , valid for z � zo with zo being the
largest z-coordinate of the antenna as indicated in Figure 1(a), is
given by [4]

E� � x,y,z� �
1

2��
��

�

�
��

�

T� �kx,ky�eikzzei�kxx�kyy�dkxdky

� F�1�T� �kx,ky,z��, z � zo (1a)

where (x,y,z) are the Cartesian coordinates of the observation point
with position vector r�, while kx and ky are the spectral variables
which together with kz � �k2 � kx

2 � ky
2, with k being the wave-

number, constitute the Cartesian components of the wave propa-
gation vector k�. Eq. (1a) shows that the two-dimensional inverse
Fourier transform (IFT), F�1, of the PWS for a given z-coordinate
z � zo, T� �kx,ky,z� � T� �kx,ky�e

ikzz, provides the electric field E� at that
z-plane. The inverse of Eq. (1a) is obviously

T� �kx,ky,z� �
1

2��
��

�

�
��

�

E� x,y,z�ei�kxx�kyy�dxd y � F�E� � x,y,z��,z

� zo (1b)

The spectral kxky-domain is divided into two regions, see Figure
1(b). The visible region, for kx

2 � ky
2 � k2, contains propagating

plane waves and the invisible region, for kx
2 � ky

2 k2, contains
evanescent plane waves. The two spectral variables kx andky are
real, while kz is real in the visible region but purely imaginary with
a positive imaginary part in the invisible region to satisfy the
radiation condition. Since the evanescent plane waves are expo-
nentially attenuated with increasing z-coordinate, their contribu-
tion to the field is usually negligible at distances larger than one
wavelength from the antenna [3]. In practice, the kx- and ky-
integrals are truncated at finite values 	kxmax and 	kymax, respec-
tively, and in cases where the PWS is obtained from measure-
ments, the PWS is reliable only over the visible region or an even
smaller spectral domain [5].

The PWS is an analytic function on the entire spectral domain
except possibly at the border between the visible and invisible
region where kz 
 0 and a singularity of the type 1/kz often exists
in one or more of its components [4]. This constitutes the only
possible singularity and a necessary but insufficient condition to
prevent its existence is a null in the xy-plane of the antenna
far-field pattern. While the singularity in the PWS does not ex-
plicitly appear in Eq. (1b), it is seen when T� �kx,ky�is expressed as
a function of the volume current density J�of the antenna [4]

T� �kx,ky� �
1

kz

1

4�k�
k� 	 � k� 	 ��

V
J� �r��ei�kxx�kyy�kzz�dV� (2)

with � being the medium intrinsic admittance, or when the visible
region of T� �kx,ky�is expressed in terms of the far-field pattern [4],

E� far�r,
,�� � lim
kr3�

E� �r,
,�� �

�
eikr

r
ik cos
T� �k sin
cos�, k sin
sin�� 
 � �0, �/2�, � � �0, 2��

(3)

since k cos
 � kz.

Figure 1 PWE for a general antenna: (a) Spatial domain of validity, z �
zo, (b) visible and invisible regions of the spectral kxky-domain. [Color
figure can be viewed in the online issue, which is available at www.
interscience.wiley.com]

Figure 2 Array of five y-oriented electric Herzian dipoles displaced on
the x-axis
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3. THE SINGULARITY EXTRACTION TECHNIQUE

Though the singularity of T� �kx,ky�is integrable, a direct use of the
IFFT results in an inaccurate aperture field unless the singularity is
sampled very densely. While on one hand this could in principle be
possible, on the other hand such a high density would be necessary
over the entire kxky-domain to have the uniform sampling required
by the IFFT algorithm. This presents a problem when the PWS is
obtained from measurements since a very dense angular or spatial
sampling, in 
- and �-coordinates for far-field measurements or in
x- and y-coordinates for planar near-field measurements, is then
required. Another possible approach is to employ a special numer-
ical integration scheme incorporating a singularity extraction tech-
nique like for example is shown in [6, 7]. Finally, it is possible to
transform the Cartesian spectral variables into spherical spectral
variables in which case the singularity disappears. However, in
both cases one would loose the advantages of the IFFT.

Here, we propose to defactorize the spectrum T� into a product of
two functions, the finite T� 1and the singular 1/kz whereby

T� �kx,ky� � T� 1�kx,ky�
1

kz
. (4)

Since the IFT of a product of two spectral functions is equal to the
convolution of the two corresponding spatial functions [10] the
integral of Eq. (1a) is effectively solved since the IFT of the finite
T� 1can be computed numerically by the IFFT and the IFT of the
singular 1/kz is computed analytically using the Weyl-identity [4]

eikr

i2�r
�

1

2��
��

�

�
��

�

1

kz
ei�kxx�kyy�kzz�dkxdky z � 0. (5)

Thus Eq. (1a) is rewritten as follows,

E� � x,y,z� �
1

2��
��

�

�
��

�

T� �kx,ky�eikzzei�kxx�kyy�dkxdky z � zo

�
1

2��
��

�

�
��

�

T� 1�kx,ky�
1

kz
eikzzei�kxx�kyy�dkxdky

�
1

2��
��

�

�
��

�

T� 1�kx,ky�eikz� z�z1�ei�kxx�ky�dkxdky �
1

2� �
��

�

�
��

�



1

kz
eikzz1ei�kxx�kyy�dkxdky � E� 1�x,y,z � z1� �

eikr1

i2�r1
(6)

As it is seen in Eq. (6), the z-coordinate is split in two z 
 (z � z1)
� z1 and hence r1 � �x2 � y2 � z1

2. This is done to have an
exponential term of the type of eikzzin both factors, to use the Weyl
identity of Eq. (5) and ensure an accurate implementation of the
convolution, as explained in the following.

From a computational point of view the following important
observations can be made.

First it is noted that, in practical implementations of Eqs. (1a)
and (6), the PWS is known only at N 
 N discrete points on a finite
	kxmax and 	kymax domain and thus with sampling densities
�kx � 2kxmax/�N � 1�and �ky � 2kymax/�N � 1�, respectively.

Figure 3 Amplitude of the Cartesian components of the PWS T� for the array of Hertzian dipoles in dB scale and normalized to the center value of Ty, on
the z 
 0.1� plane. [Color figure can be viewed in the online issue, which is available at www.interscience.wiley.com]

1310 MICROWAVE AND OPTICAL TECHNOLOGY LETTERS / Vol. 50, No. 5, May 2008 DOI 10.1002/mop



In virtue of the Nyquist sampling criterion and the discrete Fourier
transform theory, the transformed electric field is also given at N 

N discrete points centered at the origin and with sampling densities
�x � 2�/��kxN�and �y � 2�/��kyN�, respectively [3].

Second we notice that the Green’s function, that is usually
computed at the same N 
 N discrete spatial points (the Green’s
function can however be computed on an even larger xy-domain,
provided that the sampling in x- and y- is maintained, since we
know its expression analytically), is azimuthally symmetric and,
once convolved with the function E� 1, it provides the electric field
E� at (2N � 1) 
 (2N � 1) discrete points.

Third, though the result of Eq. (6) is in principle independent of
the chosen z1, the result is accurate only when the truncation errors
of the two spatial functions on the chosen xy-domain are negligi-
ble. For the AUT considered in Section 4 which has a size of 8�,
a z-coordinate less than 0.2� ensures E� 1values with negligible
truncation error on the [�30�: 30�] xy-domain and a z1-plane of
about 0.01� provides the Green’s function with a sufficient decay
on the same spatial region. The effect of the convolution will
always be that of a more accurate field; however, for small z1-
values the Green’s function is very peaked and it may happen that
the effect is qualitatively limited.

Figure 4 Amplitude of the x- and y-component of the electric field in dB scale at z 
 0.1� normalized to the maximum of the y-component of the analytical
field: (a) analytical field, (b) IFFT of the visible region of the PWS without the singularity extraction, (c) IFT of the visible region of the PWS with the
singularity extraction. [Color figure can be viewed in the online issue, which is available at www.interscience.wiley.com]
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Fourth, if we want to compute the electric field E� only on a
certain spatial window of the entire xy-domain, whether centered
or not, we can easily modify the convolution algorithm by provid-
ing as input the function E� 1on the desired xy-window, as long as a
sufficient decay of E� 1is ensured. The Green’s function can also be
considered on a window smaller than the entire xy-domain, pro-
vided that such a window is centered at the origin and a decay of
at least 60 dB from the peak is ensured. By doing that, the
computational time for the convolution drastically diminishes.

Fifth, it is noted that the singularity extraction technique pro-
vides the correct aperture field also for nonsingular spectral com-
ponents and the technique can thus be applied to all components of
the PWS without a priori considerations on the absence or pres-
ence of the singularity.

4. TEST CASE

To illustrate the effect of the singularity extraction technique
presented in Section 3, we investigate here an array of 5 y-oriented
electric Hertzian dipoles displaced along the x-axis at a distance of
2� from each others, see Figure 2. The excitations of the five
dipoles are P, P/2, P/5, P/8, and P/10, respectively, with P being
the dipole moment of the dipole at the origin. The exact PWS is
first computed from Eq. (2) on the [�2k : 2k] kxky-domain with 91
sampling points in both directions, see Figure 3. The PWS clearly
shows the singularity in both the x- and y-components. In the
computation of the aperture field from this PWS, only the visible
region is taken into account since this is most often the case in
practice, while the invisible region is zero-padded.

Figure 4a shows the analytical x- and y-components of the
electric field on the z 
 0.1� plane while Figure 4(b) shows the
result of a straightforward IFFT of the singular PWS without the
use of the singularity extraction technique. It is evident that while
all five dipoles are seen in Figure 4(a), only the first two are clearly
distinguished in Figure 4(b). The last three dipoles, having a
weaker excitation, can not be correctly detected since the singu-
larity is not properly taken into account. Figure 4(c) then shows the
result of applying the singularity extraction technique. In this case
all five dipoles are clearly detected and the difference in their
excitations can also be seen. The slightly wider extensions of these
compared to the analytical result is due to the truncation of the
PWS to the visible region and the truncation of the two functions
involved in the convolution on the finite xy-plane.

5. CONCLUSIONS

An effective technique to extract the singularity of plane wave
spectra in the computation of antenna aperture fields has been
presented. The algorithm is based on the Inverse Fast Fourier
Transform and Weyl-identity and allows the accurate computation
of the aperture field when a dense sampling in the spectral domain
is not possible. The detection of sources of very weak amplitude
has been verified by a numerical example and the evident advan-
tages compared to the Inverse Fast Fourier Transform of the PWS
without the singularity extraction have been underlined.
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ABSTRACT: A compact and wideband printed dipole antenna is pre-
sented for C- and X-applications. The proposed balun-fed antenna con-
sists of a double-sided printed dipole structure with a microstrip-fed
modified spiral-dipole printed on the top side of the substrate, and a
capacitive-coupling rectangular-patch, a connecting strip line and the
ground plane printed on the bottom side. For the proposed antenna,
a wide resonant band which extends from 6.27 to 12.47 GHz, with a
fractional bandwidth of 66%, is observed. Details of the experimen-
tal and simulation results are presented and discussed. © 2008
Wiley Periodicals, Inc. Microwave Opt Technol Lett 50: 1312–1317,
2008; Published online in Wiley InterScience (www.interscience.wiley.
com). DOI 10.1002/mop.23341

Key words: printed spiral; dipole antennas; wideband; capacitive cou-
pling

1. INTRODUCTION

Microstrip or patch antennas are widely used for microwave ap-
plications in a market driven by device miniaturization, as they are
small and easily fabricated. In addition to their well-known ad-
vantages (low profile, low cost of fabrication, easy integration into
planar arrays, light weight, and compatibility with microwave
integrated-circuit technologies), broadening frequency bandwidth
and sharing multifrequency bands are also desirables properties,
especially with the rapid progress in wireless communication.

In particular, communication systems that operate in the C and
X-bands are normally designed using separate antennas for each
band. Since it is becoming more and more important to use such
systems in one setting, it is desirable to design a single antenna that
operates in both frequency bands [1]. To comply with this require-
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