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ABSTRACT 

An accurate and efficient numerical model is developed to 

simulate the far field of an antenna under test (AUT) 

measured in a Compact Antenna Test Range (CATR), on 

the basis of the known quiet zone field and the theoretical 

aperture field distribution of the AUT. The comparison 

with the theoretical far-field pattern of the AUT shows the 

expected measurement accuracy. The numerical model 

takes into account the relative movement of the AUT 

within the quiet zone and is valid for any CATR and AUT 

of which the quiet zone and aperture field, respectively, 

are known. 

The antenna under test is the Validation Standard Antenna 

(VAST12), especially designed in the past for antenna test 

ranges validations. Simulated results as well as real 

measurements data are provided. 
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1. Introduction 

Compact Antenna Test Ranges are widely used 

measurement facilities for antenna gain and pattern 

measurements. When measured in receive mode, the 

antenna under test is illuminated by a known incident 

quasi-planar wave, called quiet zone field, generated by 

the single or double reflector system of the CATR. 

Besides a well-designed feed for the frequency range of 

interest and very accurate reflector surfaces with effective 

serrations, CATR measurements have the big advantage 

of not needing probe correction and near-to-far field 

transformation, as is the case for spherical, cylindrical or 

planar near-field antenna measurements. This apparently 

advantageous characteristic is, however, one of the major 

drawbacks of CATR systems, due to the lack of a well-

defined procedure to evaluate the accuracy of the 

measured AUT pattern.  

It is well known that an antenna pattern measured in a 

CATR is the result of the interaction between the AUT 

aperture field and the field distribution in the quiet zone 

of the CATR, see Figure 1. Under ideal conditions, the 

quiet zone field distribution is a perfect plane wave with 

uniform amplitude and phase. In practice, the quality of 

the feed, the diffraction from the edges of the reflectors 

and the non-perfect absorbers in the facility introduce 

ripples in the uniform distribution of the quiet zone field, 

which affect the measured AUT pattern.  

 

Figure 1- A typical CATR with the quiet zone field 

and the AUT aperture field highlighted. 

Several studies have been conducted in the past with the 

aim at modeling the quiet zone imperfections and estimate 

its influence on the measured AUT field. The computation 

of the quiet zone field by pure Physical Optics (PO) and 

linear weighting of the currents over the serrated area of 

the CATR reflectors was presented by Jensen in 1999, [1]. 

The modeling of the currents over the serrated area was 

later improved [2] by taking into account the detailed 

geometry of the serrations. The effect of a non ideal quiet 

zone field on the AUT measured pattern was calculated by 

the coupling between the PO currents on the CATR 

reflectors and the AUT. The comparison between the 

AUT pattern obtained by coupling analysis and the ideal 

simulated pattern clearly showed the effect of the 

diffraction from the serrations at the angles where the 

AUT main beam intercepted the reflector edges. This 

effect, which is the main source of error in CATR 

measurements, was also observed and studied in detail by 



Philippakis [3] by developing a 3D model of the coupling 

between the AUT and the CATR quiet zone. The work 

was based on the coupling equation involving the plane 

wave spectra of the AUT and the CATR, but was applied 

only to analytical CATR and AUT distributions and was 

simplified to a 2D version, due to computational reasons. 

Though simple in its mathematical form and already 

presented in [4], the coupling equation requires both an 

efficient algorithm to be solved, in order to make the 

computation of practical use, and a good knowledge of the 

coupling phenomena in order to discriminate between the 

possible sources of errors. 

The purpose of this work is to develop an accurate, 

general and efficient numerical model, called CATREP, 

able to compute the expected measurement accuracy of a 

CATR range, on the basis of a known field in the quiet 

zone and a known aperture field distribution of the AUT, 

see Figure 1. The model is based on the coupling equation 

and will take into account the relative movement of the 

AUT within the quiet zone field. The tool will take 

advantage of the latest and highly efficient routines 

developed by TICRA during its long experience in 

software development, and will allow for the input and 

output data the well known GRASP format or the newly 

defined and standardized EDI format [5]. More 

specifically, CATREP will read as input the quiet zone 

distribution and the AUT aperture field, and compute the 

ideal far-field of the AUT and the coupling between the 

AUT and the CATR in the far-field region, which 

corresponds to the AUT pattern which is expected to be 

measured in the CATR. From the comparison of the 

theoretical antenna far-field pattern and the pattern 

predicted by the computational tool, the measurement 

accuracy of the CATR will be assessed. 

The paper is organized as follows: in Section 2 the 

coupling theory is briefly summarized and the proposed 

algorithm is described, in Section 3 the approach is 

applied to the Validation Standard Antenna (VAST12) 

illuminated by an ideal and uniform quiet zone field, 

while in Section 4 the technique is validated by real 

measurement data. 

2. The CATREP algorithm: theory, implementation 

and working principles 

The mutual coupling between two antennas arbitrarily 

oriented and separated in free space has been studied in 

detail in the past, see for example the exhaustive treatment 

contained in [6]. Considerations and suggestions for an 

efficient computation are given in [4], while an alternative 

derivation based on the antenna as a multiport circuit can 

be found in [7]. 

The mutual coupling between two antennas, one 

transmitting and one receiving, is given by the so called 

coupling integral, and is based on the dot product and 

successive integration of the far fields of the two antennas. 

In its most general form, the coupling integral is 

expressed by 
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with k being the wavenumber, k  the propagation vector 

ˆ ˆ ˆsin cos sin sin cosk k x k y k z        and ζ the 

free space impedance. The hemisphere expressed in 

function of the traditional θϕ spherical coordinates is  , 

while Prec is the power of the pattern of the receiving 

antenna. The quantity r  constitutes the mismatch factor 

of the transmitting antenna, i.e.
2 2

1 r   , where  is 

the reflection coefficient at the input antenna ports. Since 

this quantity depends on the underlying antenna circuit, 

the factor will be neglected from now on. By considering 

the CATR receiving and the AUT transmitting, Eq. 1 can 

be rewritten as 
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It is noted that due to reciprocity, the role of the receiving 

and transmitting antenna can be interchanged, and that in 

Eq. 2 both patterns are assumed to be normalized to a 

total power of 4 watt, such that the output 
2

aCATR
  is 

the power received by the CATR when the AUT radiates 

a power of 4π watt. The signal aCATR
 is the complex 

coupling pattern. It represents the AUT pattern measured 

in the CATR and is a function of the scanning grid 

coordinates. The vector 0r  goes from the origin of the 

CATR coordinate system to the origin of the AUT 

coordinate system as illustrated in Figure 2. In order to 

compute Eq. 2, the CATR is assumed to be fixed in space, 

whereas the AUT is rotated on the given scanning grid, 

and for each AUT orientation the integral is computed. It 

is noted that to perform the integral of Eq. 2, the far-field 

patterns of the AUT and CATR must be expressed in the 

same coordinate system. Four spherical scanning grids are 

possible: θϕ, uv, Elevation over Azimuth and Azimuth 

over Elevation. They are all centered at the origin of the 

AUT coordinate system. The output obtained by 

CATREP is then decomposed on two polarization unit 

vectors.  For linear polarization, they can be given by the 

traditional spherical unit vectors ̂  and ̂ or by the co- 

and cross-polar unit vectors êco and êcx  according to 

Ludwig’s third definition.  

 

 



 

Figure 2 – Coupling between the CATR and the AUT: 

AUT and CATR coordinate systems. 

The far-field patterns of the AUT and CATR are 

computed from the respective aperture fieldsEa , which 

are input to CATREP, through the corresponding 

equivalent magnetic currents Jm    

 ˆ2m aJ z E    (3) 

and the radiation integral [7] 
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where the integral is calculated over the aperture plane 

and sin cosu   , sin sinv   , with θϕ describing 

the forward hemisphere. The radiation from these currents 

represents the antenna radiation provided that the field 

outside the aperture plane is negligible. The integration 

grid in the solid angle variable d  can be a fixed grid in 

which the field , ( )far CATRE k  needs only to be calculated 

once, while for each output value the AUT is rotated and 

the , ( )far AUTE k  is calculated at new points. To obtain a 

fast algorithm, expanding the aperture field in a Fourier 

series and computing analytically the far-field from the 

Fourier coefficients was found to be the most successful 

approach. 

In the practical evaluation of Eq. 2, the integration is 

carried out in the CATR coordinate system and the solid 

angle element d  is expressed as sind d d    . In 

order to save computation time for high frequencies, it is 

possible to reduce the half hemisphere integration domain 

  to a number of disjoint intervals [ ; ]sn en  , which 

represent the areas where the significant contributions to 

the integral come from. The first interval is normally 

chosen as [0; ]m , where m  includes the main beam and 

the first sidelobes of the CATR pattern. The next intervals 

should be chosen such that they capture the edge 

diffracted rays from the CATR main reflector rim at the 

angles where the AUT main beam intercepts the reflector 

edges. These intervals of width e s   correspond to 

stationary points in the coupling integral and must be wide 

enough to contain the main lobe and first sidelobes of the 

AUT. It was found that 20 /m CATRD  , with DCATR 

being the CATR main reflector dimension 

and 15 /e s AUTD    , where DAUT is the physical 

dimension of the AUT, constitute a good rule of thumb. 

The directions of the diffracted rays depend on the rim of 

the CATR main reflector and the distance between the 

CATR main reflector and the AUT:  these can be found 

once the measurement set-up is known, see Figure 3. The 

variable ϕ has the traditional [0:2π] domain.  

 

Figure 3 – Disjoint intervals in the CATR coordinate 

system xcyczc to which the integration in the half 

hemisphere can be reduced: on the left in 3D, on the 

right in 2D.  

3. Simulated results 

A simple CATR quiet zone distribution was first 

considered.  It was assumed that the CATR quiet zone 

field corresponded to the field radiated by a reflector of 7 

by 5 meters, in the horizontal and vertical direction 

respectively, uniformly distributed in amplitude and 

phase. The origin of the CATR coordinate system xcyczc 

was located at the center of the reflector, with x-axis 

horizontal and y-axis vertical, see Figure 4, in such a way 

that the quiet field distribution coincided with the zc=0 

plane. The AUT was constituted by the VAST12 antenna, 

see Figure 5. It consists of an offset shaped paraboloid 

working at 12 GHz, with circular projected aperture of 

diameter D ≈ 49 cm ≈ 20λ, and a rigid mounting structure. 

The antenna was designed in the nineties with the purpose 

of providing a stiff, robust and lightweight antenna with a 

number of interesting electrical properties, challenging 

and general enough to be tested in different measurement 

facilities [9]. 

A model of the VAST12 antenna was made with GRASP 

and the field radiated by the antenna was computed on the 

120cm x 120cm plane located at d=51 cm from the center 

of the reflector, see Figure 6, with physical optics on the 



reflector and method of moments on the mounting 

structure and the external surface of the feed horn. 

 

 

Figure 4 – CATR main reflector, the coordinate 

system xcyczc and the AUT coordinate system xayaza. 

 

 

Figure 5 – The VAST12 antenna. 

A plot of the obtained y-component is given in Figure 7. It 

is noted that the xayaza coordinate system depicted in 

Figure 6 coincides with one shown in Figure 4.  

 

Figure 6 – GRASP model of the VAST12 antenna and 

the aperture plane where the field is computed. 

The uniform field of the CATR at zc=0 and the VAST12 

antenna aperture field at za=0 were thus read by CATREP 

and the ideal far-field and the coupling between the 

antenna and the CATR in the far-field region were 

computed. 

 

Figure 7 – Amplitude of the y-component of the 

VAST12 antenna field on the aperture plane of Figure 

6. 

Results can be seen in Figure 8, for the amplitude of the 

co- and cross-polar components in dB on the two cuts 

ϕ=0˚, 90˚. The upper plot refers to the case in which the 

CATR quiet zone is linearly polarized along xc, while the 

lower plot to a quiet zone linearly polarized along yc. It 

can be seen that, for both CATR polarizations, the co-

polar components on the two phi-cuts of the coupling 

pattern coincide with the expected far-field in the main 

lobe and sidelobes except for a clear diffraction effect 

which occurs around the angles where the AUT main lobe 

intercepts the CATR rim, i.e. at θ ≈ 35˚for ϕ=0˚ and at θ ≈ 

26.5˚for ϕ=90˚. The cross-polar component, which does 

not exist for ϕ=90˚, is affected by the same diffraction, but 

to a lower degree.  

 



 

Figure 8 – Amplitude of the far-field and coupling 

pattern for a uniform CATR distribution and the 

VAST12 antenna.  

4. Experimental results 

The quiet zone field distribution was then given by the 

field distribution measured in the ESTEC CPTR 

(Compact Payload Test Range), see Figure 9 for a plot of 

the amplitude of the x-component. It is noted that only the 

x-component of the quiet zone field was available, while 

the y-component was assumed to be zero. It is reminded 

that such a quiet zone field distribution only describes the 

quiet zone field of the CPTR in a circular area of 1 m 

radius, see Figure 9, corresponding to the size of the 

mirror used to perform the quiet zone measurement. In 

practice the quiet zone field distribution of the ESTEC 

CPTR has a radius almost one meter wider. 

 

Figure 9 - Amplitude of the x-component of the quiet 

zone field measured in the CPTR, (xy-plane in cm). 

The CPTR geometry is shown in Figure 10. The main 

reflector has a dimension of 8800 mm x 7500 mm, 

including serrations, where DCATR=8800 mm. The distance 

d between the centre of the main reflector and the origin 

of the quiet zone coordinate system is d=17777 mm. The 

VAST12 coordinate system xayaza is oriented as in Figure 

6 but the origin is displaced from the center of the 

aperture. The distance between the origin of the VAST12 

and CPTR coordinate systems is equal to d2=274.125 mm 

 

Figure 10 – CPTR geometry (the distance between the 

coordinate systems is not to scale), and the VAST12 

xayaza  and CPTR xcyczc coordinate systems. 

The obtained patterns are shown in Figure 11, normalized 

to their maxima. It can be seen that the cross-polar 

component at φ=0˚ of the far-field computed from the 

VAST12 aperture field coincides with the coupling cross-

polar component. The far-field component is perfectly 

symmetric, while the coupling one shows an almost 

unnoticeable asymmetry. The co-polar component on 

φ=90˚ shows very good agreement in the main lobe, while 

sidelobes of the ideal far-field are in general higher than 

the ones of the coupling pattern. This is particularly 

evident in the first two sidelobes for theta around -8˚ and 

in the first one for theta almost 8˚. The co-polar 

component for φ=0˚ of the far-field, not shown here, 

coincides with the coupling one in the ±10˚ theta range, 

while for theta smaller than 0˚the coupling sidelobes are 

generally higher. This does not happen for theta larger 

than 0˚, where they mainly coincide. 

The obtained patterns can be compared to the coupling 

patterns shown in Figure 8 for a uniform quiet zone field 

distribution. Though the distance between the AUT 

coordinate system and the rim of the CPTR reflector in 

Section 3 was equal to 5 m, important observations can be 

made. We can notice that diffraction effects exist in both 

coupling patterns. The diffractions are at (or close to) the 

angles where the AUT main beam intercepts the CPTR 

reflector rim. For the coupling given by the quiet zone 

measured by ESTEC, these angles were estimated to be 

around ±8˚, due to the reduced size of the quiet zone field 

distribution. For a uniform quiet zone field and a CPTR 



main reflector with straight rim, the diffraction effect is 

highly concentrated around this defined angular direction, 

while its influence is smaller but more spread when a 

quiet zone field coming from a CPTR main reflector with 

serrations and tapered illumination is considered. 

Serrations together with the tapered illumination of the 

reflectors decrease the current distributions on the CPTR 

reflectors close to the rim, and thus the diffraction from 

the edges, but widen the CATR spectrum.  

 

Figure 11 - Coupling and far-field pattern obtained by 

CATREP with measured quiet zone data. 

7.  Summary 

A general, accurate and efficient numerical model was 

developed to simulate the far field of an antenna under 

test measured in a Compact Antenna Test Range, on the 

basis of the coupling between the known quiet zone field 

of the CATR and the theoretical aperture field distribution 

of the AUT. The model takes into account the relative 

movement of the AUT during the measurement process. 

The theory behind the numerical model was summarized 

and the working principles of the algorithm were 

explained.  

The AUT was constituted by the VAST12 antenna, and its 

aperture field was computed with GRASP. The quiet zone 

field was first considered ideal and uniform, and later 

substituted by a measured distribution. In both cases the 

comparison between the ideal AUT far-field and the 

coupling pattern clearly showed the inaccuracies 

introduced by a CATR measurement, given by sidelobes 

errors at the angle where the AUT main beam intercepts 

the CPTR reflector rim. This is more evident in the co-

polar than in the cross-polar pattern. These errors are 

significant, but concentrated in space, for a uniform quiet 

zone distribution; they decrease in amplitude, but spread 

in angular region, for a quiet zone coming from a reflector 

with tapered illumination and serrations.  

For a detailed and accurate validation of the CATREP 

software, the measured quiet zone field distribution of the 

CPTR must be known on the complete aperture and a 

CPTR measurement of the VAST12 antenna must be 

performed. 
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