
4. CONCLUSIONS AND DISCUSSION

The letter describes an AlGaAs/GaAs-based planar Gunn diode

fabricated on a GaAs semi-insulating substrate with an inte-

grated series inductor to resonate out the diode capacitance at

high frequency. RF measurements have been presented in which

a device with a 1 lm active channel length oscillated with a

fundamental frequency of 120.47 GHz and an RF output power

of 29.14 dBm, which is the highest reported fundamental fre-

quency and output power from a GaAs-based Gunn diode.
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ABSTRACTAn alternative parameter-free adaptive approach for the
grouping of the basis function patterns in the multilevel fast multipole
method is presented, yielding significant memory savings compared to the

traditional Octree grouping for most discretizations, particularly when
using higher-order basis functions. Results from both a uniformly and
nonuniformly meshed scatterer are presented, showing how the technique

is worthwhile even for regular meshes, and demonstrating that there is no
loss of accuracy in spite of the large reduction in memory requirements

and the relatively low computational cost. VC 2014 Wiley Periodicals, Inc.

Microwave Opt Technol Lett 56:2451–2456, 2014; View this article
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1. INTRODUCTION

When solving large-scale electromagnetic scattering problems,

where the unknown is the surface current density induced by an

incident electromagnetic field on a scatterer, the multilevel fast

multipole method (MLFMM) [1–4] is one of the most powerful

methods for speeding up the necessary matrix-vector products

involved in an iterative solution.

The MLFMM is a hierarchical algorithm which achieves an

asymptotic complexity of OðNlog NÞ, N being the number of

unknowns, by computing interactions between groups of basis

functions rather than individual basis functions. The multilevel

aspect comes from using a hierarchical grouping to allow inter-

actions over increasing distances to be done by considering

increasingly larger groups.

The first step of the MLFMM is the application of a group-

ing algorithm. The grouping effectively determines the region of

validity of the Green’s function expansion underlying the

MLFMM. Furthermore, the grouping dictates the number of

terms needed to represent the functions involved in MLFMM,

Figure 5 Spectrum analyzer measurement for second harmonics fre-

quency using W-band setup. [Color figure can be viewed in the online

issue, which is available at wileyonlinelibrary.com]
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often called the bandwidth, and therefore also the required

number of samples of those functions on the unit sphere, called

the sampling rate. In most implementations [2,4], this grouping

is done using the Octree algorithm [5]. This is a fast, easily

implemented and conceptually simple algorithm, designed in

computer graphics to adapt very well to any geometrical shape.

In the context of the MLFMM, it also has the extremely

important feature of allowing reuse of some of the quantities

involved [6].

However, as the discretizations become more irregular,

which is often the case for higher-order discretizations applied

to realistic problems, the Octree grouping at the finest level

results in excessive sampling rates. This is due to the Octree

only considering the center of the geometrical elements, known

as patches, as well as the size of the largest patch, rather than

taking into account the size and shape of the individual patch.

To reduce the memory consumption significantly, particularly

for very irregular meshes or for meshes with large patches, we

suggest in this article a grouping method that allows the group-

ing on the finest level to become completely adaptive to the

shape of the patches. The method results in a modest increase

in the computational cost of a matrix-vector product, which

will be discussed in Section 4. Although this method is con-

ceptually simple, it has not to our knowledge been published

previously.

The time factor ejxt, where x is the angular frequency, is

assumed and suppressed throughout.

2. MULTILEVEL FAST MULTIPOLE METHOD

In the present article, the MLFMM is used when solving the

electric field integral equation (EFIE) [7]

n̂3Ei5LJS ; (1)

using an iterative solver. In (1), n̂ is a unit vector normal to the

scatterer S;Ei is the incident electric field, and JS is the

unknown surface current density. Further, L is the integral

operator

LJS5n̂3jxl
ð
S

JSðr0ÞGðr; r0Þd2r01
1

k2

ð
S
r0S � JSðr0ÞrGðr; r0Þd2r0


 �
;

(2)

where l is the free-space permeability, k52p=k, with k being

the free-space wavelength. Gðr; r0Þ5 e2jkjr2r0 j

4pjr2r0 j is the free-space

Green’s function and r; r0 denote observation and integration

points, respectively. For some scenarios, it is more useful to

apply the combined field integral equation (CFIE) [7],

aL1ð12aÞg 1

2
I1K

� �
 �
JS5

an̂3Ei1ð12aÞgn̂3Hi:

(3)

where I is the identity operator, Hi is the incident magnetic

field, g is the free-space impedance, a 2 ½0; 1� is a weighting

factor, and K is the operator

KJS5n̂32

ð
S

JSðr0Þ3rGðr; r0Þd2r0; (4)

where 2
Ð

denotes the Cauchy principal value.

The central part of the MLFMM is Rokhlin’s translator [1]

TLðk; k̂; xÞ5
XL

l50

ð2jÞlð2l11Þhð2Þl ðkkxk2ÞPlðk̂ � x̂Þ; (5)

where k̂ is the unit wave vector, x is the vector between two

group centers, x̂5x=kxk2; h
ð2Þ
l is the spherical Hankel function

of second kind and order l, and Pl is the Legendre polynomial

of degree l. It is important to note that the translator does not

depend on the absolute position of the groups, but only on the

vector x between their centers. Thus, the translator can be

reused for pairs of groups with the same x, a key factor in keep-

ing memory consumption low. Typically, the number of terms

L 1 1 in the translator is determined from the excess bandwidth

formula [8]

L5kD11:8b2=3ðkDÞ1=3; (6)

where D5
ffiffiffi
3
p

a is the diameter of the group, a is the sidelength

of the group, and 102b is the desired relative error.

To discretize the problem, we begin by representing the sur-

face of the scatterer S by geometric elements known as patches.

Then, (1) is discretized using a Galerkin method to yield a lin-

ear system ZI5B. Here, I is a vector containing coefficients to

the basis functions expressing the surface current density, Z is a

matrix containing as its (i, j)’th component the mutual imped-

ance between basis functions f i and f j, and B is a vector, repre-

senting the incident field as tested by the basis functions [9].

We can consider MLFMM as a method for splitting the matrix

Z into two parts

Z5 Znear 1 Z far ; (7)

where the near-matrix Znear is stored as a sparse matrix, while

Z far is not stored directly, but instead the elements required to

multiply Z far with an excitation vector I
!

are stored.

Introducing the basis function patterns as

Vjmðk; k̂Þ5
ð
S

f jðrÞ � ½I2k̂k̂�e2jkk̂ �ðrm2rÞd2r; (8)

where I is the identity matrix, and utilizing (5), we can express

the matrix elements resulting from the EFIE (1) as

Z far ðj;iÞ5�V	jmðk; k̂Þ � TLðk; k̂; rmm0 ÞVim0 ðk; k̂Þ
� �

d2k̂; (9)

which is then discretized to

Z far ðj;iÞ5j
XK

p51

wpV	jmðk; k̂pÞ � TLðk; k̂p; rmm0 ÞVim0 ðk; k̂pÞ
� �

; (10)

where j is a constant depending on the units of the impedance

matrix Z ;K52ðL11Þ2 is the number of sample points on the

unit sphere [10], and wp are the integration weights. We assume

that f i belongs to group m0 and f j belongs to group m, rmm05rm

2rm0 where rm denotes the center of group m, and we further

assume that jrmm0 j > D. If jrmm0 j � D, the element Zj;i must be

computed directly and stored in Znear . For the CFIE (3), the

expression for the matrix elements corresponding to (10) are

slightly more complicated [4].

The key issue from (8) and (10) is that the number of sample

points for the basis function patterns Vjm is the same as that

required for the translator, even though the bandwidth of Vjm is
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lower [10]. Note that the bandwidth of Vjm is directly related to

the largest value of jrm2rj attained on the domain of f j, due to

the term e2jkk̂ �ðrm2rÞ in (8).

3. GROUPING

An Octree [5] is used here as a hierarchical data structure,

allowing a geometrical object to be spatially partitioned in a fast

and simple manner, thereby providing a grouping of basis func-

tions that are spatially near each other. The Octree grouping is

done by creating an original bounding box for S, hereafter

termed level 1 or the coarsest level. Finer levels are then created

by partitioning boxes such that the diameter of the boxes at

level q is Dq5Dq21=2. This results in eight potential boxes per

partitioning, of which only those that contain the center of a

patch are kept while the rest are pruned. This results in a very

fast partitioning of the patches into clusters. The partitioning

stops when

Dq=2 < l; (11)

where l is the largest sidelength of any patch in the mesh sur-

face, yielding q levels in the Octree.

However, as Figure 1 illustrates, this will occasionally result

in unnecessarily large groups at the finest level, simply because

the Octree scheme is not able to adapt to the patches. Effec-

tively, the center point for Vjm; rm, is positioned such that the

sample rate will be far too large. The memory cost for this can

be very significant. Further, as the sampling rate for all boxes at

each level is the same, and as the finest level box size is deter-

mined by the largest patch length in the mesh, scenarios with

nonuniform patch sizes will result in far too large sampling rates

for the groups with smaller patches.

Therefore, we propose to tabulate each Vjm based on a sepa-

rate adaptive grouping. In this approach, each patch is associ-

ated with its own group, with the center point rm chosen to

minimize the term jrm2rj in (8). D is then found by the maxi-

mum attained value of 2jrm2rj, and the sampling rate is deter-

mined from (6). In this way, the sampling rate is optimized for

each patch, and the basis function patterns are stored at the

coarsest possible sampling density.

With this adaptive grouping, (10) is changed to

Zj;i 5j
XK

p51

wpV	j �mðk; k̂ �pÞ

� WTe2jkk̂ �r �mm � TLðk; k̂p; rmm0 Þe2jkk̂ �rm0 �m 0WVi �m 0 ðk; k̂ �pÞ
� �

; (12)

where the notation �m refers to a group at the adaptive level, and

group m is the group at the finest level of the Octree containing

�m. W is an interpolation matrix, designed to increase the sam-

pling density of the basis function patterns to that of the transla-

tor, such that W 2 RK3 �K , where �K is the number of plane wave

directions used in group �m. Comparing (10) and (12), we can

express adaptive grouping as an expansion of the basis function

pattern Vim0 as

Vim05e2jkk̂ �rm0 �m 0WVi �m 0 ; (13)

which, aside from the controllable interpolation error, is exact.

We stress that there are no translations done on the adaptive

grouping level, and therefore the near-matrix Znear is not based

on the adaptive level. Basing Znear on the adaptive level would

yield a smaller matrix, but this would imply that separate trans-

lators would have to be computed for each adaptive group inter-

action due to the adaptive group center. Without this possibility

of reusing translators, which is perhaps the greatest strength of

the Octree used with the MLFMM, the memory requirements

for the translators, as well as the additional work in translation

on the adaptive level, would impair the performance. Another

advantage in using the larger Octree groups for the translation is

that (5) is more numerically stable for larger groups due to the

so-called subwavelength breakdown [11].

In a practical implementation, if each adaptive group has a

unique diameter, and thus a unique sampling rate, this would

require a significant amount of auxiliary data, in particular the

interpolation matrix W for each group. Therefore, our implemen-

tation uses a number of specifically allowed sizes, and catego-

rizes each adaptive group into those. Note that only the

sampling rate is affected by this categorization, not the center of

the adaptive group. For fairly uniform scatterers, only two or

three possible sizes are needed, while strongly nonuniform scat-

terers need a few more. As an estimate for the number of

allowed group sizes N �m , we use

N �m 5

�
max �m D �m

min �m D �m


; (14)

where �m runs through the adaptive groups, and D �m is the diame-

ter of group �m. We stress that the setup time for the adaptive

grouping is insignificant, countable in milliseconds.

The adaptive grouping does not affect the number of non-

zeros in the near-matrix Znear . To reduce the memory required

for Znear , a locally extended Octree grouping can be imple-

mented. This means that l in (11) is modified to equal the larg-

est sidelength of any quad in the group under consideration

only, rather than considering all quads in the mesh. Thus, if the

mesh is locally very fine, the Octree will locally have additional

levels compared to regions with a coarser mesh. Figure 2 pro-

vides a small 2-D illustration of a locally extended Octree

grouping.

A locally extended Octree was discussed in [12], but was

used as a way to reduce the size of the basis function patterns

only, not to reduce the memory required for Znear , as transla-

tions on the extended levels was not performed. Further, the

Figure 1 2-D illustration of adaptive grouping. The dashed line is the

projection of a patch onto a plane, while the square is the box at the fin-

est level of the Octree. To the left is shown the scenario obtained with

using the Octree grouping at the finest level as a foundation for the basis

function patterns. Further subpartitioning would dissect the patch, which

is suboptimal. Instead, on the right, we introduce an adaptive grouping

layer, which has its center such as to minimize the size of the circle

enclosing the patch. We thus see that the region of validity, indicated by

the solid black circle, is much smaller than it would be if it had to

enclose the entire square. The rm0 �m 0 vector indicates the phase-center

shift needed to start the upward pass. [Color figure can be viewed in the

online issue, which is available at wileyonlinelibrary.com]
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focus was not on irregular meshes, so neither the approach nor

the results can be compared with the present article.

4. NUMERICAL RESULTS

The first example involves a perfectly electrically conducting

(PEC) sphere, designed to illustrate that even for uniformly

meshed scatterers, it is beneficial to apply the adaptive group-

ing, particularly if the group size on the finest level of the

Octree is much larger than the patch size. It further illustrates

that there is no loss of accuracy from the adaptive grouping.

The second example concerns an irregularly meshed circular

PEC plate with several small holes, designed to represent

mounting holes. While we stress that these holes are so small

that they should not be considered in the electromagnetic repre-

sentation of the problem, it is fairly common in structures based

on CAD (computer-aided-design) to have such features.

The results are based on the implementation detailed in [13],

but the implementation does not utilize the storage of basis func-

tions using spherical harmonics expansions (SHEs) [14], as we

want to isolate the effects of using adaptive grouping compared to

standard Octree grouping at the finest level. However, these two

techniques (adaptive grouping and SHE) can easily be combined,

and their combination allows use of the SHE to reduce the com-

putational cost of adaptive grouping. We use Lagrange interpola-

tors to step between the sampling rates of the levels. When

discussing total memory, we include the memory needed to store

the entire MLFMM structure, including near-matrix, basis function

patterns etc., as well as minor temporary data, including that

needed for interpolation matrices in the adaptive grouping.

Throughout, the accuracy setting b 5 3 is used in (6). The error is

computed as the relative RMS (root mean square):

Relative RMS 5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXNs

i51

ðjEi;ref 2Ei;cal jÞ2

XNs

i51

jEi;ref j2

vuuuuuuut ; (15)

where Ei;ref and Ei;cal denote the reference and calculated elec-

tric fields at the ith sample point, respectively, and Ns is the

number of samples.

4.1. Sphere
We consider an x̂-polarized plane wave at 10 GHz, propagating

in the 1ẑ direction, incident on a 1-m PEC sphere centered at

the origin of the co-ordinate system. Using fourth-order basis

functions, we vary the sidelength of the patches between 0:9k

and 1:3k for the fairly uniformly meshed structure, and use the

CFIE (3) with a50:5 to solve the problem, requiring between

3,22,752 and 6,68,352 unknowns. Figure 3 shows the memory

consumption as function of the RMS, illustrating the unfortunate

property of the Octree grouping to have a very complicated

dependence between memory and RMS. In particular, for the

scenario Dq=2 < l
 Dq, where l is the largest sidelength in the

mesh and q is the finest level, the standard Octree grouping

results in extreme memory consumption for the basis function

patterns, visible as a peak Figure 3. The adaptive grouping does

not have this problem for the basis function patterns, though we

can still see the effects through the memory used for the near-

matrix. We further see that including the locally extended

Octree only has an effect at a single point, further smoothing

out the “hump” when the discretization is getting close to allow-

ing an additional level in the Octree.

Figure 4 illustrates the time spent per matrix-vector product.

We see a modest increase from using the adaptive grouping due

to the extra interpolation step. However, particularly for higher-

order discretizations, where there are relatively few groups at

the finest level, and thus fewer interpolation steps, this will be

negligible compared to the significant reduction in memory.

Thus, we can conclude that even for uniformly meshed scatter-

ers, there is a very significant potential memory reduction to be

achieved using adaptive grouping at the cost of a modest

increase in computation time.

4.2. Circular plate with holes
We now consider an x̂-polarized plane wave at 300MHz , propa-

gating along 2ẑ, incident on a 36 m diameter circular plate,

centered at the origin and positioned in the xy-plane. The plate

has nine square mounting holes, each with a sidelength of 0.1k,

placed in a cross around the center. The meshing of this surface

with quadrilaterals using sidelengths between 0.1k and 1.28k is

shown in Figure 5.

The discretization yields N 5 51491 unknowns, with polyno-

mials up to seventh-order being used on the largest patches. The

default Octree grouping yields a fairly poor grouping, with a

sidelength at the finest level of 2.25k. This results in 3.79 GB

of total memory. Using the adaptive grouping and locally

Figure 3 Memory for the entire MLFMM structure, as a function of

the accuracy, comparing the traditional Octree grouping at the finest

level, using adaptive grouping only, and using adaptive grouping as well

as the locally extended Octree (fully adaptive). The RMS is increased

by increasing the patch length. [Color figure can be viewed in the online

issue, which is available at wileyonlinelibrary.com]

Figure 2 2-D illustration of an Octree grouping using locally extended

levels. The solid lines indicate the finest level achieved using the stand-

ard Octree grouping. The dashed lines indicate regions where the Octree

has been locally refined due to small patches being present in the

groups.

2454 MICROWAVE AND OPTICAL TECHNOLOGY LETTERS / Vol. 56, No. 10, October 2014 DOI 10.1002/mop

http://wileyonlinelibrary.com


extended Octree, the memory is reduced to less than a sixth,

623 MB, while the time per matrix-vector product is increased

by roughly 8%. The memory for the basis function patterns

alone is reduced from 3.1 GB to 426 MB, a factor of 7.5. We

note that with adaptive grouping, but without the locally

extended Octree, the total memory required would have been

1.09 GB, so for this strongly nonuniform mesh, the locally

extended Octree is effective.

Figure 6 shows the scattered fields from each of the two

techniques, further demonstrating that the proposed adaptive

approach, with both adaptive grouping and a locally extended

Octree, yields the same result as the standard Octree grouping.

5. CONCLUSIONS

Our results demonstrate that the proposed adaptive grouping

approach should be included in modern implementations of

MLFMM, particularly when using a higher-order discretization

with larger patch sidelengths. Further, for strongly nonuniform

meshes, a locally extended Octree should also be implemented.

For a modest increase in computation time, the reduction in

memory obtained with these methods is significant and the

implementation is simple.
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locally extended Octree (fully adaptive). We note that the differences

between the adaptive grouping only and the “fully adaptive” approach

are primarily due to inaccuracies in the timings. [Color figure can be

viewed in the online issue, which is available at wileyonlinelibrary.com]
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ABSTRACT: This article proposes a double-balanced 60- to 12-GHz
down-conversion mixer fabricated in the 90-nm CMOS process. The pro-
posed mixer has a 5.825 dB measured conversion gain and 13–16 dB

noise figure. The input P1dB of the mixer is 24.4 dBm and the measured
LO-IF, LO-RF, and RF-IF isolations are above 42, 44, and 41.5 dB,

respectively. VC 2014 Wiley Periodicals, Inc. Microwave Opt Technol

Lett 56:2456–2458, 2014; View this article online at

wileyonlinelibrary.com. DOI 10.1002/mop.28610
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1. INTRODUCTION

Owing to the rapid growing demand on the high data rate wire-

less communication, RF bands within 10 GHz for existing wire-

less systems become too crowded and cannot satisfy people’s

requirement. Recently, systems using the 60 GHz band have

drawn increasing interests because of its 7-GHz unlicensed band-

width [1] and other channel characteristics including good data

security and low inference. Just as other wireless communication

systems, the RF front end plays an important role in the perform-

ance of whole system. The mixer that performs frequency conver-

sion is an essential component in the RF front end. Mixers for

60 GHz systems can be realized by passive mixers [2,3] or active

mixers [4–8]. The passive mixers do not consume power and

have better linearity performance but they suffer from the draw-

back of no gain. Gilbert cell architectures [4–6] and gate-pumped

mixers [7,8] are in the category of active mixers to provide con-

version gains (CGs). Although the Gilbert cell is the most com-

mon topology for mixer design, the CG may be limited by the

loss via the parasitic capacitance between the transconductance

(Gm) stage and the switch stage and by the operation speed of the

switch devices. In the conventional gate-pumped topology, the

RF and LO signals are combined by some kind of passive cou-

pling structure, then the combined signals are fed into the gate

terminal of the CMOS device and the IF signal is generated by

the nonlinearity of the device. The port-to-port isolations of such

kind of mixers significantly depend on the design of the coupling

structure which usually occupies a large area.

In this article, we utilize the nonlinearity effect of the devices via

the voltage difference between the gate terminal and the source termi-

nal and design a 60- to 12-GHz mixer using the TSMC 90-nm CMOS

process technology. The design considerations are presented in Sec-

tion 2, measured results of the proposed mixer are shown in Section

3, and then a simple conclusion is drawn in Section 4.

2. CIRCUIT DESIGN

Due to the frequency planning consideration of the system, we

adopt the super-heterodyne architecture as shown in Figure 1

which is similar to that proposed in [9]. The proposed mixer is

the RF mixer which down-converts the 60 GHz signal to the

12-GHz IF band. As it is the second stage (excluding the filters

before and after the LNA (low noise amplifier)) of the whole

system, the major objectives to achieve are sufficient CG, low

noise figure (NF), and good linearity (P1dB or IIP3).

Figure 2 shows a simplified circuit of the gate-pumped mixer.

As indicated in the previous section, the RF and LO signals are

combined by some kind of coupling structure and the combined

signal is fed into the gate terminal of the CMOS device M1. Due to

the nonlinear effect of the active device, a current with the required

Figure 1 System diagram of a super-heterodyne receiver for 60 GHz

band applications. [Color figure can be viewed in the online issue, which

is available at wileyonlinelibrary.com]

Figure 2 Schematic of a simplified gate-pumped mixer

Figure 3 Schematic of the proposed 60- to 12-GHz mixer
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