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Higher Order Discretizations
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Abstract—The multi-level fast multipole method (MLFMM)
for a higher order (HO) discretization is demonstrated on
high-frequency (HF) problems, illustrating for the first time
how an efficient MLFMM for HO can be achieved even for
very large groups. Applying several novel ideas, beneficial to
both lower order and higher order discretizations, results from
a low-memory, high-speed MLFMM implementation of a HO
hierarchical discretization are shown. These results challenge the
general view that the benefits of HO and HF-MLFMM cannot be
combined.

Index Terms—Fast multipole method, higher order basis func-
tions, integral equations.

I. INTRODUCTION

HE electromagnetic scattering problem can be solved by

setting up a surface integral equation for the unknown
surface current density. The discretization of the integral equa-
tion is often done using the method of moments (MoM) with
local-domain basis functions [1]. The resulting system of linear
equations is subsequently solved using either a direct or an itera-
tive approach. The latter is the only viable option for large-scale
problems, though some research has been done in applying di-
rect methods to large problems [2].

Unfortunately, the matrix itself quickly grows too large to
store as the electrical size of the problem increases. With N
unknowns, the memory cost of storing the matrix increases as
O(N?) and so does the computational cost of the matrix-vector
products required during the iterative solution. Both of these
factors make the iterative MoM approach prohibitive. The
computational electromagnetics community has sought to
avoid this by using two different approaches; either by reducing
the number of unknowns required to achieve a given accuracy
or by applying fast solution methods that have an asymptotic
complexity less than O(N?).

The first of these approaches has primarily involved the study
of basis functions and geometric discretizations with more desir-
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able properties than the standard Rao—Wilton—Glisson (RWG)
functions [3], which are first-order basis functions in the di-
rection of the current, hereafter defined as lower order (LO).
Improved basis functions can be obtained simply by defining
basis function families that allow increasing the order of the
RWG functions [4]. Other function families, which have the de-
sirable property that they are hierarchical, have also been con-
sidered [5]-[7]. The hierarchical definition of the functions al-
lows the expansion order to be chosen independently for each
geometrical element (patch). A required supplement to higher
order basis functions is the use of curved geometrical elements
[4]-[6], that allows each element to represent a larger part of a
curved scatterer and thus increases the support of the basis func-
tions. The choice of basis functions and geometrical elements is
critical for the accuracy of the solution and the number of itera-
tions required for convergence [6].

The second approach has resulted in several new methods,
some of which are still being refined. The most popular one
seems to be the fast multipole method [8], [9] and its hierarchical
variant, multilevel fast multipole method (MLFMM) [10]-[12].

Early research on combining the benefits of HO discretiza-
tions and MLFMM was done in [13], concluding that the larger
patch sizes involved in HO discretizations severely limit the
performance. To alleviate this problem, another approach was
suggested in [14], where a Nystrom-type approach is used to
reduce the memory requirements. However, no comparisons
between varying polynomial orders were done, and the savings
achieved with this approach are significantly lower than those
presented in the present paper. Later research focused on
choosing basis functions suitable for MLFMM [15], thereby
sacrificing the generality of the approach. Another line of
research has focused on modifying some of the aspects of
MLFMM [16], thereby alleviating some of the concerns re-
garding HO implementations. However, the results [17]-[19]
only considered polynomials of first and second orders, as did
[20], which describes an interpolatory HO implementation.
Although [21] compared the number of iterations for a few im-
plementations of HO function families, it did not consider the
memory nor the accuracy of these implementations. Also, the
effects of varying the basis function order were not considered.

More recently, research has switched to focusing on standard
implementations of MLFMM with higher order, hierarchical
discretizations [22]-[24]. However, these papers are rather brief
and they suggest some suboptimal choices in the underlying
implementations, causing concerns about whether the conclu-
sions are viable and, more importantly, they fail to demonstrate
higher order convergence. The explicit conclusion from [13],
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[17], [22], [24] is that going beyond second-order is not worth-
while for MLFMM, either due to memory or accuracy concerns.
The main contribution of this paper is to challenge the previ-
ously established conclusion: HO convergence can be achieved
while maintaining an efficient, low-memory, high-speed
MLFMM implementation for high-frequency problems, and
going beyond second order is indeed advantageous. The major
contributions of this paper can be summarized as follows.

1) We demonstrate that the higher order convergence of the
basis function set is maintained when using our MLFMM
implementation.

2) We show that the memory cost of using HO discretizations
with our proposed modifications (see below) to MLFMM
is far lower than previously described in the literature.

3) We show that the computational time for a matrix-vector
product is significantly lower using HO MLFMM com-
pared to LO MLFMM.

To arrive at the accurate, low-memory, high-speed HO
MLFMM scheme, several parts of the standard MLFMM
implementation must be modified. The key modifications nec-
essary for obtaining the new HO MLFMM implementation of
the present paper are as follows:

1) We use a sparse matrix storage format suited for HO im-
plementations.

2) We introduce a new grouping scheme, significantly re-
ducing the memory required, especially for nonuniform
discretizations.

3) We demonstrate the savings achieved by Eibert’s
SE-MLFMM [16] for hierarchical HO discretizations
of arbitrary order.

Some of the modifications are novel and of interest to both HO
and LO MLFMM, but our main contribution is the revision of
the paradigm that HO MLFMM is not worthwhile.

The paper is organized as follows. Section II describes the
discretization employed, highlighting the key parameters to
be used later. Section III then recaps the main points of an
MLFMM implementation, focusing on the key differences
imposed by the use of HO bases and introducing the novel
contributions. Section IV analyzes three different test cases,
discussing the relationship between computation time, memory
usage and accuracy for various discretizations. Section V
concludes on the results. The major notation is as follows.

» Scalar quantities are typeset using italics. Physical vec-
tors, either with two or three components, are typeset using
bold. Other vectors are overlined while matrices are double
overlined.

e The symbol * denotes complex conjugation, while - de-
notes the vector dot product with neither vector conjugated.

II. DISCRETIZATION

The fundamental problem to solve is the integral equation
obtained by considering an incident time-harmonic electro-
magnetic wave on a perfectly electrically conducting (PEC)
scatterer. The time factor e/“!, where w is the angular fre-
quency, is assumed and suppressed throughout. This problem
can be solved via a mixed potential electric field integral
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equation (EFIE) formulation [25]. Denoting the surface S, the
EFIE is then

LIs=nxE' (1)
where 7 is a unit vector normal to S, E' is the incident electric

field, and Js is the surface current density. £ is the integral
operator

LJs =0 X jwu /.]5

1
7

S

G(r,r)d*

Vs - Js(PY\VG(r, 7 )d*r' |  (2)

where 1 is the free-space permeability and k = 2z /A, A being
the free-space wavelength. G(r,r’) is the free-space Green’s
function G(r,7') = e 7%= /4x|r — #'| and r, ¥’ denote ob-
servation and integration points, respectively.

To eliminate the interior resonances of the EFIE operator
it can be combined with the magnetic field integral equation
(MFIE) [25], which for a smooth, closed scatterer is

(%I—HC) Js=axH 3)

in which H" is the incident magnetic field, 7 is an outward unit
normal vector, 7 is the identity operator, and K is the operator

KJs =1 x ][Jg('r’) x VG(r,r")d*r 4

where f denotes the Cauchy principal value. This yields the
combined field integral equation (CFIE) [25]

{Uzﬁ +(1—ak (%I—I— /C)] Js = ax B +(1-a)nix H'.

)
Here, n = 4/ /¢ is the free-space impedance, € is the free-space
permittivity and o € [0, 1] is a weighting factor. .
Through the Galerkin approach, a matrix equation Z I = V'
is obtained, the solution to which will yield the required surface
current densities—whose accuracy depends on the discretiza-
tion. This motivates the discretization used in the present im-
plementation, taken from [6], [26], where both the current Js
and the surface geometry S are discretized using a higher order
approach. The geometry is discretized with curved quadrilat-
erals [4], such that a point (u,v) on a pth order patch can be
expressed as

p P
eI CADEAC (6)
i=0 j=0

where r;; denotes an interpolation node and ¢?(u) is the La-
grange polynomial of pth order

¢ (u H
0,k#

k=

U — Ug

(M

u; — U

where u; is the parametric coordinate of the interpolation node.
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The currents are discretized using modified Legendre poly-
nomials along the direction of the current, and Legendre poly-
nomials in the transverse direction. Hence, J s is expanded as

Js = Jia, + Jsa, )

where @, = 9r/0u is the covariant unitary vector and similarly
for a,,. Considering a u-directed current, J¢ is thus expanded as

M® N°

SN ek, Cr P (u)CEPL () (9)

m=0n=0

Jé(u,v)
5, (u, 1;)

where the modified Legendre polynomials ﬁm are defined as

B 1—u m =20
Pru(w) = {Hu m=1  (10)
Pm(u) m 2(”) m 2 2

and P, are the Legendre polynomials of order m. Js(u, v) is
the surface Jacobian. The expansion for a v-directed current Jg
is obtained by interchanging v and v in (9). Moreover, C,,, is a
factor chosen to minimize the condition number of Z. To satisfy
the Nedelec constraint [27], N¥ = M" — 1 for a u-directed
current. The order of the expansion is said to be M*, but it
is complete to order M™ — 1 only. The term order, denoted
throughout this paper by =, refers to the value of M™ and M".
While our discretization is as detailed above, we emphasize
that the improved higher order MLFMM algorithm presented in
this paper is applicable for any choice of higher order basis func-
tions and does not depend on any specific property of the Le-
gendre basis functions nor of the curved quadrilateral patches.

III. MLFMM FOR HIGHER ORDER BASES

__The MLFMM is a procedure for performing the operation
Z 1 in O(N log N) time and memory, where N is the number
of basis functions. MLFMM relies on a hierarchical grouping
of the patches, often done using an Octree [28], based on the
center points of the patches. The interactions between closely
positioned groups are computed as usual in MoM, resulting in
a sparse near-matrix 7 ear containing the elements from 7 that
cannot be approximated by MLFMM.

Interactions that can be approximated with MLFMM are
computed by performing an integral over the sphere, which
allows for computing interactions between entire groups of
basis functions simultaneously. This process involves gathering
the radiation pattern of a group by summing up the excitations
of the basis functions in the group, translating this using the
Rokhlin transfer function (12), and then integrating against
the receiving pattern of a testing group. Furthermore, by uti-
lizing the hierarchical scheme, involving interpolations due to
differing sample rates, interactions between larger and larger
groups can be computed using this integral.

This yields a splitting of the operation Z I into

(11)

It has been shown [11] that ?ncar contains O(N) elements, thus
requiring O(N') memory and computational time, while the op-
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eration F(I) requires O(N log N') memory and computational
time.

The essential part of MLFMM is Rokhlin’s translation
function [8]

L
=S DM+ DD (ke Pk - &) (12)
1=0

where k is the unit wave vector, & is the vector between two
group centers, & = x/|z/, and }1,1(2) is the spherical Hankel func-
tion of second kind and order /. It is important to note that 77,
does not depend on the absolute position of the groups, but only
on the vector £ between their centers. Thus, 17, can be reused for
pairs of groups with the same ; a key factor in keeping memory
requirements low.

The truncation number L from (12) is determined from the
excess bandwidth formula [29]

L =kD + 1833 (kD)3 (13)
where D = /3a is the diameter of the group, a is the side-
length, and 107 is the desired relative error. We apply the one
buffer-box criterion Ngir = 1, such that interactions between
groups that are well-separated, i.e., |€| > NpyrD, are calcu-
lated by MLFMM. We note that this can potentially cause prob-
lems for small group sizes—this problem is treated in detail in
[30]. However, the approach from [30] yields extremely con-
servative estimates, which significantly increase the resource
consumption, especially for small group sizes. Thus, to avoid
being unfair towards LO basis functions, we do not use the
methods from [30] but only warn that this can yield a pessimistic
upper bound to the accuracy achievable, particularly for LO
discretizations.

With T, the mutual impedance between two basis functions
[, and f;, located in groups m and m/’, respectively, that are
well separated, can be expressed as

Zj,i ~ K #ij (k) . (TL (k r'mm’)Virn’ (k)) d2k (14)
where 1, is defined as r,, = r, — r, and r,, is the center
of the group m. The basis function patterns V ;,,, and R;,,, for

EFIE are
/ 1ir

‘RJm :ij (16)

[T kk] e-*rmmigzr (15

and for MFIE
Vim(k)=—kx / e IR [f () xi(r)|dPr (17a)

Rin(k)= [ ¢ 0 m g e

S;

(17b)

where r covers the patch S; on which f is defined. For EFIE,
x = —j(kn/4x), while for MFIE k = —(n/4x).
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We note that only the g and 43 components of the basis func-
tion patterns are nonzero. We also mention that there is a sym-
metry [31] that can be employed to store only half of the basis
function patterns.

When (14) is evaluated numerically, the expression is
rewritten through the substitution £ = cos 6

1 27
//R/rrL

which is then discretized to

Zii ™K E wpRjm (kyp

Here, K = 2(L+1)? is the quadrature points; L + 1 Gauss—Le-
gendre points in ¢ and 2( L+ 1) equidistant points between 0 and
2 — 2w /2(L + 1) in ¢. w, are the corresponding quadrature
weights.

The above expressions are valid for a single-level scheme.
With two levels, (19) becomes

TL (k Tonm! )V’im’ (k)) d¢dt (18)

) (T (kp, T Wime (kp)) . (19)

K »

ji =k Z w Jm4 k;@) ’ <6—*7'k£'&)"'m4m:3
T k(s) 7']k( Lr Tl V k(4) 20
L( p s Tmam) )€ 34 Vmg( » ) . (20)

Here, the superscript (g) denotes quantities at the gth level, with
lower numbers indicating coarser levels, i.e., the diameter of
the groups increases as ¢ decreases, such that D@ = 2D+
Further, m, is the group at the gth level containing group m,
and levels 1 (the original bounding box) and 2 are not used in
the MLFMM.

The above approach can be applied hierarchically for addi-
tional levels, i.e., the centers of the plane-wave expansions are
moved from the center of groups at successive levels by the
phase-center movement ¢ 7¥7_ As (20) reveals, the key differ-
ence between the single- and multilevel scheme is that for mul-
tilevel we need an interpolation routine to get from one level
to another in the Octree, since the sampling rates differ (13). In
the present implementation, this is done by Lagrangian interpo-
lation with anti-spherical and spherical boundary conditions on
the f and qAS components, respectively,

. [ f@r—-0,¢+7)
f(ﬁ, ¢) - { —f(27!' — 0,0+ 71')

Spherical,

Anti-spherical, €, 2],

To avoid allocating both outgoing and incoming radiation pat-
terns for each group, we reuse the storage such that memory is
allocated for the outgoing patterns for each group plus a reusable
space for the incoming patterns on each level.

Having set the stage and described the basic concepts of a
standard MLFMM implementation, we now turn to the novel
contributions of the paper, as detailed in the Introduction.

A. Near-Matrix Elements

An important consideration in HO-MLFMM is that each half
of a basis function overlapping two patches, also referred to as
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Fig. 1. In this simple example the grid lines represent the Octree grouping in

2-D, which precisely coincides with six patches. The edge basis function ¢ is
split between groups 1 and 2, while the patch basis function b belongs to group
6. The solid circle has diameter D and the dashed line denotes the range outside
which the FMM approximation with Ngr = 1 is applicable. We thus see that
group 2 is in the near-interaction list of group 6, while group 1 is not. Since ¢ is
an edge basis function, its interaction with & will consist of a contribution from
both the near- and far-interaction parts of the MLFMM.

an edge basis function, should be placed into separate groups.
The scenario is illustrated in Fig. 1. Here, we see that half of the
edge basis function c is placed in group 1, while the other halfis
placed in group 2. As a consequence, when considering the in-
teraction of function ¢ with function # in group 6, the interaction
will be split between the near-matrix and the MLFMM opera-
tion. Thus, the corresponding matrix element Z,  will require a

contribution from both 7., and (20). In our implementation,
we allow for this and thus let the group size equal the largest
patch size, rather than expanding the groups such that Z.; is
entirely contained in Z ;.

An important part of the standard MLFMM implementation
is the storage format for the sparse near-field matrix. A common
choice is a block storage format, where each block represents
the near-interaction between two groups. Unfortunately, a block
format is impractical when basis functions span two groups,
since the contributions to element Zmnar(i 7)» when either f;or
[ is an edge basis function, are stored in more than one block,
leadlng to increased memory usage due to duplicated elements.
Further, there is additional bookkeeping involved because it is
not possible to find a contiguous ordering of the basis functions
within each group for an arbitrary scatterer. Therefore, another
format is desirable.

Another typical choice is the compressed sparse row (CSR)
format [32], which is well suited for matrix-vector products. It
does, however, have the unfortunate property of spending more
than one-third of the storage of the near-matrix on storing inte-
gers. To avoid this, another approach is used here.

For most discretizations, where the basis functions belonging
to a given group are placed consecutively in the impedance ma-
trix, the elements in the near-matrix lie in contiguous blocks.
This is particularly pronounced for HO discretizations, where
there is a large number of basis functions on each patch.

We thus propose to modify the CSR format by not explicitly
storing consecutive column indices. Instead, we store the first
index in such a set, and store the number of consecutive indices
in the set as a negative number. Thus, we only store roughly
2t integers for column indices, where # is the number of sets in
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total. This has the advantage of being completely adaptive to
the discretization and requiring only minor modifications to ex-
isting code based on CSR, as well as being just as parallelizable
and easy to modify for the symmetric case.

B. Well-Separated Elements

The limiting factor of performance in HO MLFMM is the
size of the domains. The following presents two techniques, one
novel and one which is adopted from [16], which together dras-
tically reduce the memory required for storing the basis func-
tion patterns. Note that while these are relatively more advanta-
geous for HO discretizations, they will still reduce the memory
requirements, even for LO MLFMM. Whether they are worth-
while or not for LO MLFMM is not of concern here, although
it is demonstrated in Section IV.

1) Adaptive Grouping: The major problem with the large
patches in HO discretizations in connection with MLFMM is
the very significant discrepancy between the size of the patches
and the size of the finest group. Since for a given scatterer the
group size at each level of an Octree is fixed, and since it is not
worthwhile partitioning a patch into distinct groups, we easily
risk a scenario where the sidelength of the group is close to
twice the patch sidelength. This is extremely inefficient because
the basis function patterns will have a far larger bandwidth than
necessary, and a new approach has to be devised.

We propose an adaptive grouping, which essentially adds a
separate, extra layer, called the adaptive level, at the finest level.
This layer is distinct from the Octree grouping, such that the
center and group size of each adaptive group can be chosen as
desired. In principle, this works analogously to an extra layer in
the Octree, but crucially, it is not restricted by the same rules as
those that apply to the Octree grouping scheme. The advantages
are:

* The center of each group can be chosen such that the re-
gion of validity is as small as possible, while still being
conformal to the patch inside each group.

+ For highly irregular meshes, the Octree grouping scheme
results in groups that are not smaller than the largest patch,
which might be a very poor choice in very finely meshed
regions. The adaptive grouping allows for arbitrarily sized
groups in different regions of the mesh.

* There is little need to carefully choose the patch size to fit
with the Octree grouping, as [17] mentions is necessary if
HO MLFMM is to be useful. With adaptive grouping, the
bandwidth of the basis function patterns will fit the patch
size.

« This approach allows us to efficiently solve the classic
problem of patches sticking out of the groups. Instead of
expanding all groups at the lowest level, one can instead
expand just the adaptive group and the groups at higher
levels, which is less costly since the groups now only hold
aggregated patterns instead of basis function patterns.

We stress that there is no translation done on the adaptive level,
and therefore the near-interaction matrix is still based on the
finest level in the Octree, and there is no loss of translation ac-
curacy from the adaptive grouping since the categorization of
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Fig. 2. 2-D illustration of adaptive grouping. The dashed line is the projec-
tion of a patch onto a plane, while the square is the box at the finest level of the
Octree. However, further sub-partitioning would dissect the patch, which is sub-
optimal. Instead, we introduce an adaptive grouping layer, which has its center
r 5+ such as to minimize the size of the circle enclosing the patch. We note that
the patch is allowed to overlap the box, as shown, as long as it isn’t further than
D/2 from the center. We thus see that the region of validity, indicated by the
solid black circle, is much smaller than it would be if it had to enclose the entire
square. The r,,, s vector indicates the phase-center movement needed to start
the upward pass.

well-separated elements is unaffected. The only change from
the usual MLFMM scheme is thus that the basis function pat-
terns are tabulated on the adaptive level. Fig. 2 illustrates the
effects of the reduced size of the adaptive group.

The work by Pan et al. [20] discusses an approach to locally
extend the Octree, providing extra levels that allow a lower sam-
pling rate. The extra levels are obtained by further subdivision
of the finest level of the Octree. Their approach differs from the
adaptive grouping presented here in a few key areas:

+ Being based on further subdivision, their approach does not
allow for arbitrarily sized groups, instead only allowing for
further halving of the group diameters. Adaptive grouping
allows for any group size, adaptive to the specific patch,
providing the lowest possible sampling rates.

+ Their approach does not allow for an adaptive group center.
This is a key feature of adaptive grouping, as it allows for
significantly lower sampling rates, even for very irregular
meshes or meshes where the finest level groups of the Oc-
tree has their centers positioned far from the patches.

* Both of these advantages of adaptive grouping over the
technique presented in [20] are particularly important for
very large patches. [20] did not consider patches larger than
0.2

When implementing the adaptive grouping in the ma-
trix-vector product, (19) is thus expanded to

K T

Zii ™~k wpRjz (kp) - <W ¢ ke Tam
p=1
Ty by e T TV e (k) ) (1)

where 1 is the adaptive group in which f; resides and equiva-
lently for 7n" and f,. Thus, we can express the adaptive grouping

as an expansion of the basis function pattern R;,, or V;,,; from
(19) as
Vim (k) = e * T WV 00 (). 22)

Aside from the controllable interpolation error, (22) is exact.
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Since this modification requires some additional auxiliary
data, in particular an interpolation matrix W, a practical im-
plementation would choose a number of possible group sizes,
and then categorize the adaptive groups into these, instead
of having auxiliary data for every adaptive group. For fairly
uniform meshes, only 2 or 3 possible group sizes are required,
while strongly nonuniform meshes might require a few more. In
any case, the auxiliary data is negligible, but has been included
in the memory counts in the numerical results presented later.

2) Spherical Harmonics Expansion: In[16], Eibert develops
a method for storing the basis function patterns as coefficients
to a spherical harmonics expansion (SHE), which drastically
reduces the required memory. The key equations are repeated
here for completeness.

We expand the basis function patterns (either (15) or (17) can
be used here) as

/f 1 kk} ik —T) 2 — Z Z P, Y60, 6)
(23)

p=0g¢=—p

where Y}, are the orthonormalized spherical harmonics, P are
the associated Legendre functions, and W is the order of the
SHE. The coefficients p,, are then stored instead of the sampled
basis function patterns. The coefficients are computed numeri-
cally via the integral

P, = # V(6. )Y, (8. )ik, (24)
Although V is stored most efficiently in (9 qAb) components, W
can be made significantly lower by using (, ¢, z)-components
due to the singularity of # at the poles.

Further, converting the incoming fields as

ZZ TqYpa(0: 9)

Tr (k7 rm )V i ( (25)
p=0g=—p
we can convert (19) to
woop
Zji~ K,Z Z (p;,q) (26)

p=0g=—p

The procedure for computing a matrix-vector product is only
changed at the finest level. Here, we aggregate the SHE coef-
ficients, evaluate the resulting radiation pattern for the group,
convert to (#, ¢) components, and then continue as in the stan-
dard MLFMM procedure. For disaggregation, we convert the
incoming fields to Cartesian components, convert to a SHE for
a given group using (25), and then evaluate (26). The integration
weights required to evaluate (25) are multiplied onto the trans-
lation operators, so very little additional work is required to im-
plement this method in an already working MLFMM scheme.

The choice of W in (23) is proposed in [16] to be determined
roughly as W = I./2 for LO discretizations. In [17], it is men-
tioned that the choice W = min(ceil(L/2), 5) is appropriate for
HO discretizations. The latter estimate seems far too optimistic
and a more theoretical approach is taken here.

Since the spherical harmonics form an orthonormal basis, we
can calculate V; for the largest of the adaptive groups and the
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highest order basis function f ; in that group. We can then adjust
W until g(W) < 1072, where g(W) is defined as

ﬂ‘V(C)( ‘dzk YOI Dy I
g(W)=max ’ o

(e) ﬂ‘vj(c)(k)’ P2k

i(0)]?

rq

27

where (¢) runs through the components. The W found here is
then used in all subsequent calculations.

In practice, however, it is sufficient to investigate the general
behavior of g(W) for the scalar case of V;(k) = ¢/*7 letting
|r| = D/2 vary. This allows for rough estimates of W' to be tab-
ulated in advance using (27), as a function of D. It is worth men-
tioning that for § < 2, this approach reveals that the original
W = L /2 estimate is reasonable, while for better accuracies it is
slightly too optimistic. Thus, weuse W = L /24 max(8-2,0).

IV. NUMERICAL RESULTS

This section contains three test cases designed to demonstrate
the savings achieved by the modified implementation. The first
two examples have reference solutions, allowing us to compare
the achieved accuracy and computational requirements across
varying discretizations. The last example is a demonstration of
the capabilities of the implementation on a realistic scatterer. We
note that whenever we discuss MLFEMM memory, we refer to the
memory required to store the entire MLFMM structure but not
to solve the scattering problem. Thus, we disregard the storage
required for solvers, preconditioners and geometry, since this is
not the focus of the present paper, but include everything re-
quired to perform a matrix-vector product; from basis function
patterns and near-interaction matrix as well as minor temporary
data such as interpolation matrices and various bookkeeping.
We apply GMRES and an overlapping near-field preconditioner
[33], but stress that the results are independent of the iterative
method and preconditioner. The iteration timings include the
inner operations of GMRES and the cost to precondition, but
these represent less than 0.5% of the times and are thus irrele-
vant to the conclusions.

As a measure of accuracy, we use the Relative RMS Error,
defined as

o
=
PP
where E; .ot and E; ., denote the electric far field at the {ith
sample point from the reference and calculated scattered fields,

respectively, and N, is the number of samples. The computation
times shown are measured without parallelization.

- Ei,cal|2

i,ref

Relative RMS Error =

(28)

'i,ref|

A. Sphere

The first example concerns the scattering from a 1-m radius
PEC sphere at 8 GHz, illuminated by an Z-polarized plane
wave propagating along +z. The sphere is discretized using
fourth-order curved quadrilaterals. The problem requires be-
tween 235200 and 940 800 unknowns for the first-order basis
functions and between 187 500 and 367 500 unknowns for the
fifth-order functions. We apply MLFMM with 3 = 3 in (13)
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Relative RMS Error as function of unknowns
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Fig. 3. Higher order convergence for the 8-GHz unit sphere when MLFMM is
applied with accuracy 3 = 3 in (13).
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Fig.4. MLFMM memory for varying relative RMS error and polynomial order
n for accuracy 8 = 3 in (13), using CFIE, with and without the modifications.

to the CFIE with «« = 0.5, calculate the scattered field in the
E-plane, and compare it to the Mie series. The results are shown
in Fig. 3 as a function of the mesh size for each order.

The key observation from Fig. 3 is the increasing slope of
the curves as the order of the basis functions increases. This
corresponds to the theoretical estimate [27] of the discretiza-
tion error behaving as O(h™), where h is the mesh spacing and
n is the polynomial order. We note that this is to our knowl-
edge the first time such behavior has been demonstrated with
MLFMM for hierarchical basis functions and for orders larger
than 3. This demonstrates that there is no additional error when
using MLFMM with HO rather than LO basis functions.

Fig. 4 demonstrates the required memory, as a function
of relative RMS error, for varying polynomial order. While
noting the nontrivial memory behavior as opposed to what we
see with standard MoM, we also see that polynomial orders
above 2 are perfectly competitive with lower orders in terms of
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memory. The lowest order n = 1 leads to a significantly higher
memory consumption for a given relative RMS error, while
the memory consumption for n > 2 is roughly independent of
the polynomial order, except for high accuracies where n = 2
is not competitive. This behavior differs significantly from
previously published conclusions [13], [22]-[24], where the
conclusion was that » > 2 was not worthwhile.

The reduced memory consumption is due to the modifications
described in Section ITI-B. This is clearly demonstrated by com-
paring the blue and the red set of curves that show the memory
used with and without the modifications, respectively. The mod-
ifications result in a greater portion of the memory being spent in
the group radiation patterns and the near-interaction matrix. The
memory for storing group radiation patterns is far more signif-
icant for LO discretizations due to the vastly increased number
of groups, while the near-interaction matrix is more significant
for HO discretizations due to the larger group size at the lowest
level. This is also evident in the plot, since the relative reduction
in memory is much larger for the higher orders, although there
is still a noticeable reduction for first order. We mention that the
sidelength of the patches at the coarsest accuracy for order 5 is
1.6A. Considering the low amount of memory used, these are
far larger patches than we have seen used successfully in other
higher order MLFMM implementations.

We note that the results from this test case, along with re-
sults from other experiments not shown here, indicate that the
“best” order in terms of memory is very hard to quantify in gen-
eral, because it depends on the geometry of the problem at hand
as well as the desired error. Thus, we caution against recom-
mending a specific order for all problems based on the results
shown here, since these are based on a very theoretical case.
Indeed, the almost uniformly meshed sphere, with no exterior
edges and fixed polynomial order everywhere is not a common
problem in practice.

Instead, we emphasize that, contrary to previously reported
results, there is no significant penalty in terms of memory when
increasing the order of the basis functions, provided that one
applies the modifications described in the present paper. Indeed,
increasing the order can be very beneficial in terms of memory,
particularly when going for solutions with low relative RMS
error.

Fig. 5 shows the most important feature of HO MLFMM—a
significantly reduced time per iteration as the order is increased.
This is the result of HO MLFMM having fewer levels and fewer
unknowns, while also representing a larger portion of the inter-
action in the near-interaction matrix. Furthermore, the two sets
of curves (in blue and red) allow us to gauge the time cost of
the modifications. Overall, the increase in computational cost
is roughly 20%, except for order 4 which fits very poorly with
the mesh, resulting in a slightly larger cost for the interpolation
involved in adaptive grouping. We note that the SHE could be
used to render the interpolation step in adaptive grouping unnec-
essary, which would reduce the computational cost of adaptive
grouping significantly.

The conclusion from Figs. 4 and 5, along with other exper-
iments not shown here, is thus clear: Use as high an order as
possible, since this significantly reduces the iteration time, while
requiring roughly the same memory as lower orders.
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TABLE 1
MEMORY USE FOR TEST CASE B. THE ACCURACY IS 3 = 3 IN (13), AND WE HAVE USED ONE BUFFER BOX EXCEPT FOR
ORDER 1, WHERE WE NEEDED TO USE TWO BOXES TO GET SUFFICIENT ACCURACY. MLFMM MEMORY INCLUDES THE
TEMPORARY DATA AND THUS EXCEEDS THE SUM OF THE MAIN CONTRIBUTORS LISTED HERE
Order | Mesh Size | Unknowns | Near matrix [GB] | Bas. Patterns | Translation | Group patterns | MLFMM | MLFMM | Time pr. Iter
[A] Indices Values [GB] [GB] [GB] [GB] Levels Normalized
1 0.20 2927300 0.37 7.22 1.42 1.27 10.42 23.64 8 3.92
2 0.49 1889496 0.15 2.94 1.45 1.09 6.73 14.49 7 1.85
3 0.97 1077948 0.09 3.62 1.33 1.08 4.76 12.97 6 1.37
4 1.52 784576 0.05 1.96 1.50 1.08 4.63 11.32 6 1.35
5 2.38 494340 0.04 2.99 1.55 1.08 3.49 11.21 5 1.05
Normalized iteration time as function of Relative RMS Error With modifications =M= 7 — 1 =@ =7 — 2
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Fig. 5. Time per iteration, normalized to 1 for the fastest run, for the solutions
shown in Fig. 4. We see a direct connection between increasing the order and
reducing the time pr. iteration. We also see that the cost of adding the modifi-
cations, as compared to the standard MLFMM implementation, is noticeable,
representing a roughly 20% increase. The legend is as in Fig. 4.

We also bear in mind that we are using CFIE on a PEC scat-
terer, which doubles the number of basis function patterns and
breaks the symmetry in the near-interaction matrix that would
come from using EFIE. This is a greater disadvantage for HO
than for LO, because a larger proportion of the memory is spent
in the near-field matrix and on storing basis function patterns for
HO, while LO uses a significant amount of memory on storing
the group patterns, which is unaffected by switching between
EFIE and CFIE. To illustrate the memory behavior in EFIE,
Fig. 6 is the equivalent of Fig. 4 but with the memory used in
EFIE. Again, while the “best order” will depend on the scatterer
and desired accuracy, it is clear that going beyond second order
is indeed beneficial, reducing both memory requirements and
computation time.

B. Disk

The second example involves a PEC disk, located at z = 0
with a radius of 1 m, illuminated by an Z-polarized, +z prop-
agating plane wave at a frequency of 30 GHz and solved with
MLFMM applied to the EFIE. This rotationally symmetric test
case allows the use of the body of revolution method of mo-
ments (BoR-MoM) code [34] implemented in GRASP [35] as a
very accurate reference solution.

Having chosen the mesh size such that the solution for each
polynomial order yields roughly 0.3% relative RMS error,
Table 1 shows the memory costs and time per iteration for
each order. We see that it is clearly advantageous going above

102
Relative RMS Error
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Fig. 6. MLFMM memory for varying relative RMS error and polynomial order
for 3 = 3 for EFIE.

second order—all the way to order 5, both memory and com-
putation time are reduced compared to both first and second
order. We also see that the reduction in number of unknowns as
the polynomial order is increased is now more significant than
it was for the sphere. Thus, the higher order basis functions are
relatively more advantageous than for the first case. This is due
to the presence of edges, where the behavior of the true current
is hard to model accurately using lower order polynomials due
to its singularity.

To illustrate the savings achieved by the adaptive grouping
and spherical harmonics techniques, Table I shows the memory
for the basis function patterns and group patterns without these
techniques and with only the adaptive grouping. The numbers
without SHE take into account the symmetry of the basis
function patterns. We see that both techniques are instrumental,
particularly for HO implementations. The saving achieved
with adaptive grouping depends significantly upon the initial
grouping achieved by the Octree, but even for the lower orders,
the saving is significant. For SHE, the savings are much larger;
roughly a factor of 4-5. We note that both of these techniques
require additional group storage at the lowest level, but we see
that particularly for HO implementations, this is negligible.

Regarding the computation time, we see that the cost of the
adaptive technique is negligible for HO, since it trades the cost
of an extra level of interpolation/anterpolation with a faster ag-
gregation/disaggregation step. For the SHE, there is a roughly
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TABLE II
MEMORY USE FOR VARIOUS STRATEGIES—THE COST FOR ADAPTIVE, SHE STRATEGY CAN BE SEEN IN TABLE I. TIMES ARE NORMALIZED

Fig. 7. Tllustration of the Planck telescope mock-up model, looking into the
shielding structure. A small, black line indicates the location of the feed, while
the red, green, and blue axes indicate (, ¥, Z), respectively.

5% time increase for HO, since the cost of (25) and conver-
sion between components is traded for a much faster aggrega-
tion and disaggregation. All-in-all, we believe that these results
demonstrate that any modern HO implementation of MLFMM
should apply both adaptive grouping and SHE, since the mas-
sive memory reduction comes at a very minor computational
cost.

C. Planck Mock-Up

As a final example, we compute the radiation pattern of a
simple mock-up of the Planck space telescope [36]. The main
part of the telescope features two large reflectors in a dual re-
flector configuration, inside a shielding structure. The structure
is shown in Fig. 7. The ellipsoidal subreflector, at the bottom of
the figure, is fed by a horn located at the bottom of the shielding
structure.

The resulting mesh at 30 GHz is quite irregular, featuring
126 596 patches with sidelengths between 0.34A and 2X and a
surface area of 170 - 103 A2. This results in 4 583 755 unknowns,
with up to ninth-order polynomials used on the largest patches.
A typical RWG discretization would require roughly 20 million
unknowns.

The required MLFMM memory for HO MLFMM is 39.5 GB,
and the problem converges in 148 iterations using a precondi-
tioner requiring an additional 9 GB of memory. The scattered
field is shown in Fig. 8.

Order No Adaptive, No SHE Adaptive, No SHE
Bas. Patterns [GB] | Group Patterns [GB] | Time pr. Iter | Bas. Patterns [GB] | Group Patterns [GB] | Time pr. Iter
1 12.56 7.69 3.36 4.50 9.94 3.89
2 13.68 5.29 1.65 4.99 6.12 1.87
3 16.78 3.88 1.31 5.17 431 1.38
4 1145 3.87 1.22 6.28 4.18 1.26
5 20.35 2.89 1.01 6.95 3.12 1.00
60
40 + -
~ 20
=,
ST !
—920 |-
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Fig. 8. Total copolar field for ¢ = 0 from the mock-up of the Planck space
telescope.

V. CONCLUSION

The results in this paper clearly show that the advantages
of higher order basis functions and MLFMM can be com-
bined, provided some additional modifications to the standard
MLFMM setup are implemented. We stress that all test cases
have employed Legendre basis functions—had we used RWG
for the LO solutions, the comparison would have been even
more beneficial to HO MLFMM, since RWG basis functions
require a much greater basis function density [26]. We further
note that while the exact memory requirements obviously
depend on the scatterer, we have clearly demonstrated that
HO MLFMM is advantageous both in terms of memory and
particularly in terms of speed. Thus, although the optimal order
cannot be generally determined since it depends strongly on
the required accuracy and the geometry of the scatterer, we
have demonstrated that using higher order MLFMM results in
significantly better performance than LO MLFMM.
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