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Abstract: The scattered far field from a halfwave 
dipole illuminating a perfectly conducting 
quarterplane is calculated. The calculation is 
based on a calculation of the radial electric and 
magnetic field components on the far-field sphere, 
using uniform geometrical theory of diffraction 
(GTD), and subsequent conversion of the radial 
fields into transverse field components using two 
elementary Green's functions. 

1 Introduction 

The problem of calculating the diffraction of an elec- 
tromagnetic wave around a perfectly conducting quar- 
terplane remains a challenge in electromagnetics. More 
then 30 years ago Radlow published a solution to the 
scalar, soft quarterplane problem [l]. The paper 
aroused some discussion, since the order of the singu- 
larity at the vertex, according to Radlow, differed from 
the accepted value [2]. Extensive tests of a vertex dif- 
fraction coefficient, derived from [ 11, showed, however, 
excellent agreement with other results obtained by 
numerical methods, e.g. [3]. The extension of Radlow's 
method to the hard quarterplane is trivial, but so far 
no one seems to have succeeded in extending the 
method to the electromagnetic case. The only exact 
solution to that problem published to date seems to be 
[4], which is not amenable to an asymptotic interpreta- 
tion, whereas a number of heuristic approaches have 
produced results that are satisfactory for practical pur- 
poses [5-71. 

The present paper will consider the vector problem 
from an entirely new angle. Is it possible to derive a 
solution to the vector diffraction problem based 
entirely on knowledge of the solutions to the soft and 
hard scalar problems? The first step is to find suitable, 
scalar wave fields that satisfy soft or hard boundary 
conditions on the quarterplane. The second is to find a 
transformation which will produce the transverse vec- 
tor components of the scattered far field from the 
above scalar fields. 
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2 Radial far field 

Consider two scalar wave fields, uE and uH, defined by: 
U E  TA * E 

U H  =l"A.H (1) 
where rA is the vector from the origin to the field point. 
By expansion in Cartesian coordinates, it is easy to find 
that the two scalar fields, uE and uH, satisfy the Helm- 
holtz equation in free space. 

Fig. 1 Position of quarterplane in x,, y,, z, coordinate system 

It is evidently possible to calculate uE and uH using 
standard geometrical theory of diffraction (GTD) tech- 
niques for scalar fields also in the presence of scatter- 
ers, provided these can be placed in such a way that uE 
and uH satisfy suitable boundary conditions on the 
scatterers. For the present application we shall place 
the quarterplane in the xA - zA plane as shown in 
Fig. 1 with the vertex at the origin and the edges form- 
ing an angle of 45" with the Z, axis. The reason behind 
this particular positioning will become evident in Sec- 
tion 3 (but, briefly, it introduces the maximum amount 
of symmetry when the problem is considered in spheri- 
cal coordinates). 

The boundary conditions for uE and uH on the quar- 
terplane now become simple, homogeneous expres- 
sions: 

U E  = 0 

- = o  d U H  

d n  
where n is a normal to the surface. At infinity the 
standard Sommerfeld radiation conditions are assumed 
to apply. 
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In Fig. 1 the source is shown as a halfwave dipole, 
and we shall now consider how the source fields, uE2 
and U$, can be derived conveniently. It can be shown 
that the field from a halfwave dipole can be repre- 
sented exactly everywhere by the field from two point 
sources, PI and P2, one at each end of the dipole, [8], 
p.69. The field at an arbitrary point, Po, can then be 
found as the sum of two ray fields, one from P1 and 
one from P2. 

In Fig. 1 the centre of the dipole has been placed at 
Ps, with the coordinates (rA,  8A, @A) = (YS, Os, x/2), and 
directed along the unit vector t, = (xA, yA,  zA) = (0, 
- cos Os, sin &). The electric field vector from either of 
the point sources, P1 or P2, will be polarised along O1 
or 62 in dipole coordinate systems centered at PI and 
P2, respectively, and we notice that rA . OJ = C,, j = 1, 2, 
where CJ is constant along any (straight) ray. The 
amplitude variation of U$ along a ray is therefore 
entirely controlled by the transport equation in the 
usual manner. The same holds for uHz. 

It is now possible to calculate the far field of uE and 
uH using standard GTD techniques. The fields from P, 
and P2 are calculated separately and the rays included 
are, depending on the position on the far-field sphere: a 
direct ray, a reflected ray from the surface of the quar- 
terplane, a diffracted ray from each of the two edges 
and two vertex rays. The edge diffracted rays, which 
include slope diffraction, are calculated using the 
standard UTD transition function [lo] as if the edge 
was infinitely long. From the definition of uEz and uHz it 
is evident that both are zero along the ray through the 
vertex at the origin. Consequently, there is no dif- 
fracted ray from the vertex but, due to the variation in 
uEz and uHi close to the vertex, there are two slope dif- 
fraction contributions for both uE and U,. One of these 
is due to the variation of the field along 8, the other is 
due to the variation along 4, where 8 and @ arc spheri- 
cal unit vectors in the quarterplane centred coordinate 
system used to define the uniform, scalar vertex diffrac- 
tion coefficients D,, and D , ,  for the soft and hard 
quarterplane, respectively, details of which are given in 
the Appendix (Section 7). Having determined uE and 
uH on the far-field sphere, T A  .+ CO, it now remains to 
transform them into transverse E and H components: 
EOA' E*A, He,, and ZpA. 

3 Green's function 

We shall now address the problem of converting the 
radial field components calculated in Section 2 on the 
far-field sphere to transverse components. In free space 
this would be trivial. We could expand the radial fields 
in tesseral harmonics and use the expansion coefficients 
in a spherical expansion of the total field. The presence 
of the quarterplane, however, dictates the use of a dif- 
ferent, far more complicated, set of expansion func- 
tions, e.g. [4]. A simpler approach, based on the ideas 
set forth in [9], will therefore be generalised to apply to 
the present problem. 

The basic assumption for the procedure is, that on 
the far-field sphere, the radial field components can be 
expressed asymptotically as: 

dependence exp(-icot) is used. Furthermore, on the far- 
field sphere: 

Ee, = SOH+, 

4 ' 4  = -SoHe, (5) 
allowing us to determine all transverse field compo- 
nents from the functions w A ( 8 A ,  @A) and ZA(8,, @A) 
defined through: 

sinO~He, = WA(QA, 4 ~ )  exp(ikrA)/rA 

sinQ~H4,  = ZA(QA, $ A )  e x p ( i J c r ~ ) / r ~  

(6) 

(7) 
We now insert eqns. 3, 4, 6 and 7 into Maxwell's equa- 
tions and isolate the radial terms. With the transforma- 
tion: 

+A = log( tan(Q~/2) )  ( 8 )  

WA(+A,~A) == WA(QA,~A) 

ZA(+A,~A) = Z A ( ~ A ,  $ A )  (9) 
the result can be expressed as the Poisson equations: 

I 

$1 0 JlA 
Fig.2 Transformed coordinate system (qA, $A) 

In contrast to [9] where the boundary conditions were 
simple, as fields in free space were being considered, 
the boundary conditions in @A for zA and W ,  are rela- 
tively complicated, whereas the conditions in qA are 
that both functions must behave as rational functions 
at *a. Consider Fig. 2 which shows the mapping of 
the far-field sphere on the qA - @A coordinates. Here, 
ql is the transform of 0, = 7~14, SO for qA q1 we have 
free space conditions, i.e. simple, periodic conditions 
on @A = 0 and @A = 2x, while for qA < the solutions 
to eqns. 10 and 11 must satisfy the boundary condi- 
tions on the quarterplane: 

If we can find the fundamental solution to Laplace's 
equation with the boundary conditions of eqns. 14 and 
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15, we can use Green's method to express the solutions 
to eqns. 10 and 11 in integral form. The topology of 
the problem suggests that the solution of coupled 
Wiener-Hopf equations may be required, since the 
combination of boundary conditions seems unsuitable 
for the application of conformal mapping. As will be 
shown it is possible, though, to apply certain transfor- 
mations which change the problem into one that may 
be solved by conformal mapping. 

*B < 
Fig.3 Equivalent halfplane in x,, y,, z, coordinates 

6 zc 

Fig.4 Equivalent halfplane in xc, y ,  zc coordinates 

We first observe that the value of qjl enters into the 
problem in a trivial manner. If we introduce the trans- 
formation: 

$B = $A - $1 

OB = 2 arctan(exp($B)) 

4 B  = $ A  (16) 
we obtain a problem for zB(qj5, q5B) and wB(qjB, q!$ 
described by eqns. 10-15, replacing the subscript A 
with B and replacing ql with zero in eqns. 14 and 15. 
Apparently this problem is no simpler than the original 
one, but if we consider the three-dimensional geometry, 
which maps onto these boundary conditions on the far- 
field sphere, we find Fig. 3, i.e. a mapping of a half- 
plane. Obviously, Fig. 3 is only valid on the far-field 
sphere, so it has no meaning to show the image of the 
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source. Fig. 3 strongly suggests yet another transfor- 
mation from the (rB, OB, q55) coordinate system in 
Fig. 3 to the (ro Oc, &-) coordinate system in Fig. 4, 
where the halfplane has been turned through 90". We 
can express the connection between the B and C coor- 
dinates through simple trigonometric relations. 

Again we introduce a transformation in 9 as: 

$C = log(tan(&/2)) (17) 
and let: 

ec(Oc, 4c) = ~ B ( Q B ,  4 ~ )  

where the right hand sides are obtained from eqns. 12 
and 13. 

Introducing: 

fc($c, 4c) = -iksin2 Ocec(Oc, 4c) (20) 

gc($c,  4c) = -iksin2 0chc(Oc,4c)  (21) 
we can then formulate a problem for z&qjc, &) and 
wXqjc, q5c) which is similar to eqns. 10 and 11, except 
for the subscripts which are changed from A to C. The 
advantage gained lies in the boundary conditions, 
which can now be expressed as: 

zc($c, 0) = 0 

zc($cJr) = 0 (22) 

for all values of qjc It is now elementary to find the 
fundamental solution to Laplace's equation by confor- 
mal mapping. The result is: 

for the Dirichlet and Neumann condition, respectively, 
where: 

-cc 0 
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4 Numerical results 

To test the method, the configuration in Fig. 1 was 
used with rs = 8lk and 0, = 135". The choice of rs is a 
compromise between making rs large to make the inci- 
dent field less characteristic of the specific source used, 
and making rs small to reduce the oscillatory behav- 
iour of the integrands in eqns. 30 and 31 and thus to 
avoid excessive computing times. The choice of 0, 
avoids irrelevant complications due to multiple edge 
diffractions. 

(29) 
Since fc and gc  are only known numerically, whereas 
the analytical form of Go and GN are known, it is pref- 
erable to perform a number of partial integrations. As 
it can be shown [9] that the endpoint contributions 
vanish, we find: 

-m 0 

(31) 
Using eqns. 6-9, replacing subscript A with C, we can, 
from eqns. 30 and 31, determine Hoc and H4c. By 
some straightforward calculations we can then find the 
field components along &(OB, (PB)  and @,(e,, (PB): 
Hea(OB, (PB) and H,+,,(O,, (PB) .  Turning again to eqns. 
6-9, replacing the subscript A with B this time, we can 
then calculate zB(qB, (PB) and wB(qB, (PB)  from which, 
by virtue of eqn. 16, we can find z A ( q A ,  (PA) and 
w A ( q A ,  (PA) and, hence, through a final application of 
eqns. 5-9, the solution to our problem, HO,(O,, @A), 

To obtain Hoc and H4c from eqns. 30 and 31, z X q 0  
(Pc) and w X q o  (Pc) must be divided by sin #c. It is 
therefore essential that the integrals in eqns. 30 and 31 
tend to zero for Iqcl - W. Due to the structure of Go it 
is clear that eqn. 30 fulfils this requirement. It is less 
obvious that, also eqn. 31 has the required property. 
Since GN contains a linear term in qco, its partial deriv- 
ative with respect to qco tends to a constant for lqcl - 
m. The first term in the integrand in eqn. 31 must 
therefore be considered separately, whereas the second 
presents no problems. It is thus necessary to require 
that the integral of gc over the entire region is zero. 
Changing the integration coordinates to (Oca, (Pco) it is 
a simple matter to verify that we can restate the condi- 
tion to be that the integral of hXBc, (Pc) over the far- 
field sphere must be zero. Since this integral is invari- 
ant with respect to the transformations introduced, we 
may as well require the integral of h A ( 0 A ,  (PA) to have 
this property. To prove that this is true, we introduce a 
region Y with boundary dY consisting of: 
(1) Two infinitesimal spheres around the two point 
sources (ayl); 
(2) Two quarterplanes displaced infinitesimally to 
either side of the real quarterplane (ay,); 
(3) The far-field sphere, cut along the intersection with 
the real quaterplane (ay3). 
The interior of Y is a free-space region where V. H = 0. 
By Gauss' theorem the total outward flux of H through 
dY must therefore be zero. Since the sources were care- 
fully chosen to have no radial field components, the 
flux through dY, is zero and, due to the boundary con- 
ditions for H on the quarterplane, there is no flux 
through dY, either. It follows thus that the flux though 
dY3 is zero as required. 

H@,(OA, (PA), @A) and E$,<eA, @AA). 
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Fig. 5 Dgracted E,, Jield around quarterplane 
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Fig. 6 Diffracted Em* Jield around quarterplane 

The results of the calculations are shown in Figs. 5 
and 6 as linear amplitude contour plots with equis- 
paced contours between zero and the maximum ampli- 
tude. The traces of the quarterplane are clearly visible 
at (PA = o", 180" and 360" between 0, = 0" and 45". To 
get an indication of the influence of the vertex contri- 
bution, another calculation was made based entirely on 
[lo]. The source was still represented by two point 
sources, but now the 0 components of the source rays 
were used to calculate the reflected and edge diffracted 
rays. The result of this calculation showed an excellent 
general agreement with Figs. 5 and 6 except for the fol- 
lowing differences: in the region of the traces of the 
Keller cones for the vertex there are significant differ- 
ences, since the field of the edge diffracted rays is dis- 
continuous here, and the ripples on the contour lines in 
Figs. 5 and 6 for large values of SA are absent. 

5 Conclusions 

The paper presents a method by which the vector dif- 
fraction problem for the quarterplane can be solved on 
the basis of the solutions to the two scalar diffraction 
problems for the quarterplane, namely the soft bound- 
ary and the hard boundary cases. The method could in 
principle be extended to other geometries for which the 
scalar, but not the vector, solutions are known. How- 
ever, since the scatterer must transform into a simple 
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boundary shape in (y, @) coordinates with homogene- 
ous boundary conditions for the w(y, @) and z (y, @) 
functions, it seems that only plane, angular sectors (of 
which the quarterplane is a special case) and circular 
cones are candidates, restricting the generality of the 
method considerably. Due to the time consuming cal- 
culations involved in eqns. 30 and 3 l,  the usefulness of 
the solution presented will mostly lie in its ability to 
generate highly accurate benchmark results against 
which other, heuristic, but faster, methods can be 
tested. 
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7 Appendix: Scalar vertex diffraction 
coefficients 

Following Radlow [l] we shall derive the uniform, ver- 
tex diffraction coefficients for the quarterplane in a 
coordinate system, where the quarterplane is placed 
with its edges along the positive x and y axes. Radlow 
considers a soft quarterplane illuminated by a plane 
wave with unit amplitude incident from the direction 
(0, @) = (O0, q50), and derives an expression for the total, 
scattered field which, with some change in notation, is: 

0 3 0 3  

-03 -03 

x Ad++(+, - k a ) M + + ( P J )  

where kl  = k sin 0, cos q50, k2 = k sin 0, sin @o, y = d(k2 
- p2 - A2) and M++(p, A) is derived from two consecu- 
tive Wiener-Hopf factorisations of y. The first of these, 
i.e. in A, is elementary, the second, in p, then becomes: 

2 / & q ?  + x = M++(p, x ) M - + ( p ,  A) (33) 
which can be solved by standard use of Cauchy’s theo- 
rem to yield: 
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where: 

Dilog(1 - d l )  - Dilog(1 + d l )  

+ Dilog(1 - dz) - Dilog(1 + dz) 
- 27rLog(-(2) - (Log(- id l )  - i - )Log(l+dl)  lr 

2 

-k Log(-id1) + i -  Log(1- d l )  ( “1 2 

3- Log(id2) - i -  ”) Log(1 - d2) ( 2 

- (Log(id2) + i? )  2 Log(1 + d 2 ) }  (35) 

Here Log is the principal branch of log, and the Dilog 
function [12] is defined by: 

DiZog(z) = - Jz X d C  
1 5 - 1  

(38) 

(39) 

To extract the diffraction coefficient for the vertex, we 
now perform two consecutive saddle point evaluations 
around the saddle points of the exponential in eqn. 32 
using the method of UTD [lo]. If we let U, denote the 
saddle point contribution, we find: 

2 

(40) 
exp(in/4) exp(ikr) 

Dv,s ( ) r 

Dv,s 
- -- 4 

x P(kr(1 + cos(Px + Pxo)))P(kr(l  + cos(Py +Pya))) 

M(60, $ O , Q ,  $1 
- 

k (sin 6 cos $+sin 60 cos do) (sin 6’ sin $+sin 60 sin $0) 

(41) 
where ( r ,  0, @) is the observation point in spherical 
coordinates, F() is the UTD transition function (conju- 
gated since [ 101 uses the time dependence expQwt)) and: 

~ ( 6 , , $ 0 ,  6,$) = M++ ( - k  sin 6 cos 4, -IC sin 6 sin $1 
x M++( - k  sin 6’ cos 4, -IC sin 60 sin $ 0 )  

x M++ (- IC sin 60 cos $0, - k sin 6 sin $) 
x ~++(-ksinOocos$o, -ksin60sin$o) 

(42) 
The angles denoted p refer to the angles between the 
incident or the diffracted ray at the vertex and the 
edges of the quarterplane, specifically: 
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cos& = r . y  
 COS^,^ = -rz . y (44) 

where ri is a unit vector along the incident ray and r a 
unit vector along the diffracted ray. 

It is trivial to copy Radlow’s procedure for a hard 
quarterplane, and the resultant diffraction coefficient 
becomes: 
DV,H 

4k cos 8 cos 80 

M(Qo,$o,Q, 4) 
- - 

X F ( k r ( l +  cos(P3: + P,o)))F(kr(l + cos(P, +Pya))) 
(sin 8 cos 4 + sin 80 cos $ 0 )  (sin 8 sin # + sin 80 sin $0) 

The diffraction coefficients D,, and D,, are derived 
for an incident plane wave and an observation point at 
a finite distance, r ,  but, due to reciprocity, they may 
also be used to calculate the far field for a source point 
at a finite distance. 

To derive the slope diffraction coefficients for the 
field from a point source in Po, we first define two 

(45) 
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orthogonal axes through the vertex along the unit vec- 
tors c1 and c2, both of which are also orthogonal to the 
incident ray from Po. Furthermore, let c1 lie in a plane 
through the z axis and therefore be parallel to 0, in Po, 
while c2 is parallel to &,. Following [ll] we represent 
the slope field at the vertex along cl by that from a 
doublet of sources displaced +.A around P, along 00. 
The diffracted ray from each member of the doublet is 
calculated and summed, and finally A -+ 0 leads to a 
slope contribution: 

where D, may be either D,, or D,, and ui is the field 
from the original source in Po at the vertex. Repeating 
the procedure along c2 instead provides the second con- 
tribution: 

, 
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