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case is the same as the isotropic case. The X wave case is under 
investigation. 
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Creeping Wave Modes for a Dielectric 
Coated Cylinder 

N. C. ALBERTSEN 

Abstract-The spectrum of creeping waves that can exist on the sur- 
face of a dielectric coated cylinder is determined by the poles in the 
Green’s function for the cylinder. Accounts of the position of these 
poles may be found in the literature, but a number of poles appear 
so far to have been overlooked. Although these poles may be of little 
interest for practical applications, they shed some light on peculiarities 
in some of the literature’s results. 

I. INTRODUCTION 

The concept of creeping waves has been a long-established part 
of the geometrical theory of diffraction, and the waves’ propagation 
properties on perfect conductors are well documented. The same can 
hardly be said about creeping waves on dielectric covered surfaces, 
although some early papers gave significant contributions to the un- 
derstanding of their properties, e.g. Elliott [l]. In recent years the 
growing interest in advanced technologies has generated a number of 
papers investigating creeping wave propagation on dielectric covered 
surfaces, e.g. [2] and [3]. Surprisingly enough, it seems, however, 
that new discoveries remain to be made in this area. 

The present study was prompted by an investigation of radiation 
properties for antennas on the European space shuttle HERMES for 
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the European Space Agency. The first step necessary for the calcula- 
tion of a creeping wave is to find the poles for the Green’s function, 
since these determine the propagation constant for the wave, whereas 
other properties of the wave are readily found once the poles are 
known. The analysis that follows is therefore devoted entirely to the 
problem of tracing the locations of the poles. 

11. ANALYSIS A N D  NUMERICAL RESULTS 

For a perfectly conducting cylinder, the poles of the Green’s func- 
tion are well known. They all lie along the Stokes’ line for a Hankel 
function or its derivative. For a dielectric cylinder the problem is 
more complex, since it involves finding the roots of a transcendental 
expression. From [2] we cite this expression as 

d(u) = H ~ ( ” ( k 0 b )  + iCH‘,l’(kob) (1) 

where C may be either 

for transverse electric (TE) polarization or 

C; = i -  k l p o  HL‘”(klb)HL2’(kla) - Hi”(kla)HL(z’(klb) (3) 

for transverse magnetic (TM) polarization. Here k, E ,  and p with 
subscript 0 or 1 refer to free space or dielectric, respectively, a is the 
radius of the metallic cylinder inside the dielectric and b is the outside 
radius of the dielectric coating. For convenience the expressions in 
[2] have been rewritten using Hankel functions in (2) and (3). Let 
d = b -a denote the thickness of the dielectric, then obviously d = 0 
leads to C I: = 0, C = m, and the required roots reduce to those of 
the nondielectric case. It would therefore seem logical to assume that 
the root loci for increasing values of d would emanate from points on 
the Stokes’ lines of H‘,”(kob) and H:(l)(kob) .  This procedure leads 
to the root loci shown in [2, figs. 2 and 41. An attempt to reproduce 
[2, fig. 61 revealed that the critical radius effect mentioned in [2] 
may have a simple explanation, viz. that a double root is involved. 
This then leads to the question of the form of the second root locus, 
which must have its origin at U = m for d = 0. Since the roots lie far 
from the transition regions of the Hankel functions with arguments 
k l a  and klb we replace the Hankel functions in (2) and (3) by their 
Debye representations (see, e.g., [4]), and to get an estimate of the 
roots for d + 0 we replace the arguments containing kla with a 
two-term Taylor expansion around k l  b .  As a result, (2) and (3) are 
simplified to 

k0P1 H~”(kIb)Hi*’(kla) - H,?(kIa)H~”(klb) 

and 

(4) 

where E ,  = and 

The branch of the square root is chosen such that z is positive for 
U = 0, and the branch cut is placed outside the region of U under 
consideration. 

0018-926X/89/12OO-1642~$01 .OO O 1989 IEEE 



IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 31, NO. 12, DECEMBER 1989 

-k d=1.6 
35 

2.8  - n=1 

30 - 

1643 

I c. 
$‘ 

0 ,  I I I I I 

0 5 10 15 20 25 30 

Fig. 1. Root loci for TE case, kob = 20, = 4, kod = 0 to K. 
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Since we shall be searching for roots near the Stokes’ line for 
H$”(kob),  we employ transition region representations for the Han- 
kel functions in ( l ) ,  even though these approximations are clearly not 
applicable in the limit d + 0. In this limit, Debye approximations 
would be more appropriate, but to use these would be essentially 
to assume the dielectric to be locally flat and would provide a poor 
starting point for the root loci associated with creeping waves. Hence 
for the TE case 
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and for the TM case 

d(u) rz 
2e-ir/3 z Ai ( - 7 )  

mkod sin (z)  

] (8) 
Ai‘( - 7 )  

e -i*/3 

m Ai (-7) 

where m = (kob/2) ’ /3  and 

For d + 0 we can now identify root loci emanating from z = n~ 
in the TE case and from z = nr - r / 2  in the TM case. In Fig. 1 
we show root loci for a TE case. It shows six root loci emanating 
from the Stokes’ line of Hl(’)(kob) shown dashed plus two root loci 
of the new type corresponding to n = 1 and n = 2 in the complex 
U = ur + i u i  plane. We see that the first two “old” root loci move 
towards the real U axis, whereas the following root loci curl up, and 
that the first ‘&new’’ root locus curls up at the position vacated by the 
second “old” root locus whereas all the following “new” loci move 
toward the real U axis. In Fig. 2 is shown root loci for a TM case. 
It shows 15 root loci emanating from the Stokes’ line of Hr’(k0b) 
plus three root loci of the new type corresponding to n = 1, 2 and 3 
in the complex U plane. Here only the first “old” root locus moves 
toward the real U axis, whereas all the following curl up. There is, 
however, a difference in the sense of direction between numbers 2 
through 12 and the following. This leaves a gap which is filled by 
the “new” root locus with n = 1. The “new” root loci with n > 1 
all move toward the real U axis. 

8 I 

I 
I 

7 

6 
V .  

5 

4 

3 1 n=i 

I 
I 

I 

1.2 1.4 I 

2 4  1.64 I 

I 

B 9 10 11 12  13 14 15 16 

Fig. 3. Root loci for TE case, kob = 11, er = 4, kod = 0 to K. 
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Fig. 4. Root loci for TE case, kob = 12, E ,  = 4, kod = 0 to K. 
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To analyze the critical radius effect mentioned in [2] also plots 
of root loci for kob = 11 and 12 are shown in Figs. 3 and 4 for 
TE polarization. Besides the “new” root loci with n > 1, which all 

to creeping waves, which are strongly attenuated except for very 
thick coatings. For radii below a critical value, one of the new poles 
replaces one of those previously described in the literature and gives 

progress toward the real U axis, there are two root loci close to the 
real U axis. In Fig. 4 both these loci originate on the Stokes’ line, 
whereas in Fig. 3 one originates on the Stokes’ line and the other is a 
“new” locus with n = 1 .  It therefore seems that the number of Elliot 
type modes (root loci with small imaginary parts) is independent of 
the critical radius, for which the two root loci in question merge for 
a certain value of kod to form a double root. 

III. CONCLUSION 

A new system of poles for the Green’s function for a dielectric 
coated cylinder has been found. In general, these poles correspond 

rise to a creeping wave of Elliott-type with low attenuation. 
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