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Caustics  and  Caustic  Corrections to the  Field 
Diffracted by a Curved  Edge 

Abstract-The  caustics  for  the  singly  diffracted  rays from a circular 
disk are investigated  when  the  rays  emanate from a source which is 
placed off the axis of the  disk.  Either two or  four  singly  diffracted  rays 
appear dependent on the  far-field  direction.  The  caustics separate the 
region of space  with two singly  diffracted  rays from the  regions  with 
four  singly  diffracted  rays.  Corrections are derived  which  allow  the ray 
description to be  continued  across  the  caustics.  These  corrections 
depend  on  the  local  properties o f  the  edge  at  the  point of diffraction 
and may  be  used  for  edges  with arbitrary curvature. Numerical exam- 
ples are included to  demonstrate how  the caustic  corrections  improve 
calculations based on the  geometrical  theory of diffraction  (GTD). 

I. INTRODUCTION 

I T IS WELL KNOWN that  the geometrical theory of diffrac- 
tion (GTD), Keller [ 11 , leads to singular expressions for  the 

field in  certain directions, e.g., at shadow  and  reflection 
boundaries and  at caustics. The singularities at shadow and 
reflection  boundaries  may be avoided through  the  introduction 
of uniform  diffraction  coefficients, Ahluwalia et al. [2] and 
Kouyoumjian and  Pathak [3],  while the singularities at 
caustics  may be removed by the  introduction of caustic 
corrections. For an axial caustic a  correction  factor  has been 
derived by Keller [4 ] .  In the present  paper we consider the 
case of nonaxial  caustics. 

For  a source on the axis of a circular  disk, the  diffracted 
field is focused  in the axial directions  and the axial caustics 
appear. If the source is moved away from  the axis, the 
caustics move in the  opposite direction away from  the axis 
and defocusing  takes  place. Now the caustics for  the GTD 
field form  two diamond-shaped figures on  the far-field sphere. 
As the displacement of the source  away from  the axis is 
increased,  the size of the  two  sectors enclosed  within the 
caustics also increase and  at a  certain stage they coalesce. 
Inside the diamond-shaped figures, four singly diffracted 
rays contribute  to  the field.  Outside the figures, only two 
singly diffracted rays contribute.  The caustic corrections 
derived in this  paper extend GTD to be  valid across a 
caustic and  connect  the singly diffracted fields on  the two 
sides of  a caustic.  Although  the corrections are derived for 
a circular  disk,  they  are of  a general nature and correct  the 
GTD field for singularities caused by the curvature of a 
diffracting edge. 
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The  caustic corrections are obtained by means of the 
principle of equivalent edge cullents [5] ~ [6] and asymptotic 
expressions for phase integrals with  two  or  three interacting 
stationary  points [7] .  For  sources close to the axis of  a 
circular disk, the  stationary  points are not  distinct and the 
radiation from  the edge cannot be attributed  to discrete 
diffraction points. In this case, the  diffracted field may be 
obtained by integrating  the edge currents  either numerically 
or analytically [4] , [8]. The integral representation of the 
diffracted field and its  asymptotic evaluation  for  isolated 
stationary  points are reviewed in Section 11. This asymptotic 
evaluation is not valid near the caustics  where the  diffraction 
integral possesses two or three stationary  points close to each 
other. In Section I11  we consider  examples of caustics for  the 
circular disk. 

Caustic corrections  to  the GTD field are derived in Section 
IV for the case where the field point is close to  a caustic but 
well away from  a cusp of caustics. Corrections valid near a 
cusp of caustics  are given  in Section V. The  numerical  examples 
in Section VI demonstrate how  the  caustic corrections  are 
utilized to improve GTD calculations. 

11. DIFFRACTION IN A CIRCULAR D ~ S K  

In order  to examine the field diffracted in a curved edge we 
consider the circular disk  with  radius a in Fig. 1. The disk is 
illuminated by a  point source S in the first quadrant of the 
zx plane. The equivalent currents give the following contribu- 
tion to  the electric  far-field: 

where k is the wavenumber.  The  time factor e- iwf  has  been 
suppressed.  This contribution  accounts  for  the singly diffracted 
field in the direction  defined b)' the angles 0 and 9. The 
variable of integration 4' is the angle to  a  point D on the 
edge. The e and Q components of the  function G(Q') are given 
by 

Here Ep' and Eoi are the  components of the incident  electric 
field at D in a ray fixed coordinate system and D, and Dk are 
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Fig. 1. Source  above circular disk. 

BOD Ip 2400 

diffraction coefficients for the 'Oft and the hard Fig. 2. Caustics  of  diffracted field for  source placed at  futed  distance, 
boundary  condition [3]. p w  = 0.760, from  axis of circular disk. Height pr of source  above disk 

the phase function h(@') is  given by 
With the distance r to  the field point  referred to the  origin. is parameter. 

h(@') = ~ ( 4 ' )  -a  sin e cos (4 - 9') (3 1 
where 

is the distance from  the source point S to  the  point of integra- 
tion D on  the edge. 

When the far-field direction is away from  the caustics, the 
phase function (3) has two or  four first-order stationary  points 
Go' where h'(Qo') = 0. (The prime denotes  differentiation with 
respect to  the angle @'.) Each of these stationary  points gives 
an asymptotic  contribution 

to  the field.  The  plus sign applies for h"(Go') > 0 and  the 
minus sign for h"(Qo') < 0 [7, p. 3821. Equation (5) could 
also be obtained by a direct  application of GTD. In the 
derivation of (5) from (1) we assume that the amplitude 
function (?(Of) is regular and slowly varying in the vicinity of 
the  stationary  point Go'. This  assumption  applies throughout 
the paper. 

b ?A 
Fig. 3.  Rays near cusp of caustics. 

while rays 2 and 3 are tangent rays to  caustic b. Ray 2 grazes 
caustic b after passing the field point while ray 3 grazes the 
caustic  before it reaches the field point. If the field point is 
moved along the  dotted line toward B on caustic b, rays 2 
and 3 approach  each other.  Rays 2' and 3' show  rays 2 and 
3 just before the field point reaches the caustic. Close to 
the  caustic, the two rays cannot be  dealt  with  separately. 
Close to  the cusp of caustics all three rays merge. 

IV. CAUSTIC CORRECTIONS AWAY FROM A CUSP OF 
CAUSTICS 

111. OFF-AXIS CAUSTICS FOR A CIRCULAR DISK In this  section we consider  the field due  to  the rays 2 and 3 

For h"(0, @; Go') equal to  zero, (5) is singular,  and the 
far-field direction (e ,  $J) is a caustic  direction  for the field 
diffracted at Q o'. Thus, the  caustic  directions  corresponding to 
Go' are obtained when the two equations h'(0,  @; QO') = 0 and 
h"(0, @; o0') = 0 are solved simultaneously. These directions 
form  diamond-shaped figures on the far-field sphere as shown 
in Fig. 2. This figure also shows the variation of the caustic 

in Fig. 3 as the field point moves fromA  on  the lit side across 
the caustic at B to C on the shadow side. The crossing of  the 
caustic  takes place far away from  the  cusp so that ray 1 is not 
affected by rays 2 and 3. 

Close to  the lit side of a caustic, the second derivative of 
the phase function in (1) is small, and the GTD ray description 
is not valid. The phase function  may then be expanded  into 

curves when the  height of the  source above the disk is varied 
while the distance between the axis and  the source is kept h(9') = h(@z')  + +h"(92')t@' - 92'12 + $h"'t92')(9'-@2')3 
constant  at  approximately  three  quarters of the radius of the ( 4 )  
disk. The  caustics  occur in the half  sphere opposite  the source 
and  may extend over a considerable part of the far-field sphere.  where @2' is the  stationary  point corresponding to  ray 2. The 

The  concept of a caustic or ray  envelope is illustrated in stationary  point @3' corresponding to ray 3 is in (6) displaced 
Fig. 3 which shows a two-dimensional.ray picture near a cusp -2h"(Qzf)/h"'(92') away from $2'. When (6)  is substituted 
of caustics. Three rays contribute to the field at  point A into (1) and c(@') is replaced by its value at  the  stationary 
between the  two caustics. Ray 1 is a tangent ray to caustic a point,  the resulting phase integral may be transformed  into  the 
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Airy function as shown in Appendix A. The contribution  due  the field. In this case. the expansion of the phase function is 
to rays 2 and 3 becomes 

N4') W O ' )  + ~ ' ( Q O ' ) @ '  - Qo') + $h"'(Qo')(Q' - i-..( 2 ) 113 ( 3 9 2 ' )  - Ai (-0) (1 1) 
kh"'(92') 

[9, p. 4841. The angle Go' in (1 1)  is obtained numerically as 

r 

where the argument of the Airy function 

a  zero  of h"(Q'). This zero is a reminiscence of the second- 
order  stationary  point  on  the caustic.  The  zero  should  be 
chosen so that h'(Qo') and h"'(G0') have the same sign. 

When (1 1) is substituted  into  the integral representation 
(1) of  the diffracted  field, the following formula ensues: 

(7) 

is negative. The parameter u is a measure of the distance to the 
caustic. Thus, u + 0 corresponds  to  the case where the  two 
rays coalesce at the  caustic into one contribution  due  to  a 
second-order  stationary  point, whereas u + M corresponds to 
the conventional GTD solution away from  the caustic  where 
the  two rays  exist independently. 

The Airy function is asymptotically  equal to 

1 
sin (%$I2 + n/4) 

- 1 i?u3/2- i r /4  - iZo3/2+ir /4  
- 

2 6 u 1  14 
(e + e  1 

(9) 

for u + 00. 

Substitution of (9) into (7) shows that (7) takes into 
account  both ray 2 and ray 3. Away from the  caustic, (7) 
tends  towards  a sum of two  terms, each of which is similar 
to (5). It is suggested, therefore,  that each GTD ray contribu- 
tion (5) be multiplied  by the caustic correction  factor 

where u is defined  by (8). Then  the sum of  the  corrected 
contributions  for ray 2 and ray 3  attains  the required  limiting 
value at the caustic. 

The derivatives appearing in the caustic  distance parameter 
u (8) should be evaluated at  the  stationary  point which  corre- 
sponds  to  the ray under  consideration.  For  a circular  disk, 
these derivatives are easily obtained from (3). In the general 
case, the caustic correction  factor will depend on the local 
properties of the diffracting edge at  the  point  of diffraction. 

The  caustic correction  factor (10) removes the singularity 
of the GTD field at a caustic. As (10) is defined  as the  ratio  of 
the Airy function  to  its  asymptotic expression  for u large, it 
becomes equal  to  unity far away from  the caustic. In practice 
this occurs  for u equal to  about 1.2. 

On the shadow side of  the caustic, from B towards C, the 
rays 2 and 3 do  not appear. This corresponds to the  situation 
at  point C in Fig. 3 where  rays 2 and 3 do  not  contribute  to 

where the  parameter u for the  distance to the caustic is given 
by 

u = kk'(Qo') 

When k f ( Q o f )  and h'f'(@o') have the same sign, the  argument 
of the Airy function is positive.  Then the Airy function is 
asymptotically given by 

for u + 00. Thus (12) is a  contribution which in a region with 
only  two singly diffracted rays from  a disk  may be added  to 
the field.  This contribution decreases exponentially away from 
the caustic  and accounts  for  the two  rays which disappear  at 
the caustic. It will be  referred to as the caustic  shadow term. 

V. CAUSTIC CORRECTIONS NEAR A CUSP OF CAUSTICS 

At a cusp of caustics, the phase function in ( 1 )  possesses a 
third-order stationary  point. Then h"'(Q') is equal to  zero,  and 
the caustic corrections (IO) and (12) are not valid. In this case, 
expansion of  the phase function  about  the  stationary  point 
452' of the  central  ray, ray 2 in Fig. 3, yields 

When h"(&') and h(4)(G2') have opposite signs, (15) gives 
three equispaced stationary  points which coalesce for 1 ~ " ( @ ~ ' )  
equal to  zero. When h"(&') and h(4)(Q2') have the same sign, 
two  of  the  stationary  points are imaginary and  only  the  central 
stationary  point is important.  For  a circular  disk, the case with 
only  one important  stationary  point occurs  when the field 
point is in the region with  two singly diffracted  rays. 
. Substitution  of ( 1  5) into  the phase integral 
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and transformation  into  the parabolic  cylinder function yields 
for h(4)(@2') positive 

as shown  in  Appendix A. 
A similar expression is  given in [7, p. 8121 for  the field 

above a uniaxially anisotropic plasma half-space where a 
magnetic line current is embedded. Use of the large argument 
approximations to the parabolic  cylinder function gives for 
h"(@2') positive 

and for h"(@2') negative 

In (18) only one  stationary  point  contributes. and the 
field point is in a region with  only two singly diffracted 
rays  from a circular disk. When h"(@,') and hc4)(G2') have 
opposite signs as in (191, all three stationary  points  contribute. 
This  corresponds to a case where the disk gives  rise to four 
singly diffracted rays. The first term of  (19) corresponds to 
the  central  ray, ray 2 in Fig. 3. while the second  term gives 
the two  identical contributions from ray 1 and 3. The 
contribution  from each of these rays is *times smaller than 
the  contribution from ray 2 because 

h " ( ~ ~ ' )  2 /z''(@~') z -2h1'(@2') (20) 

[7, p.  8121. The value of h(4)(q5') is approximately  the same 
for  the three rays. Thus it is important  to know if a ray is a 
noncentral ray since for such a ray A"(@') must be changed 
according to (20). Noncentral  rays  occur in regions where  for 
the disk four singly diffracted rays are  present.  Noncentral 
rays  are easily recognized because for these rays the signs of 
h"(@') and hC4)(9') are equal. 

Near a cusp of caustics,  caustic correction  factors are 
obtained as the ratio of (1 7) to either (18) or (1 9) dependent 
on  whether  the field point is in a region with two or four 
singly diffracted rays. For / z (~) (@~' )  positive. the caustic 
correction  factor is 

c = ( g )  
114 

in a region with  four  stationary  points and 

in the region with  two  stationary  points. Here h" and h(4) 
are  the  absolute values of the  second derivative and  of  the 
fourth derivative of the phase function  for the central ray. 
If a  noncentral ray is considered,  the  second derivative should 
be multiplied  by -95 according to (20). For h(4)(@2') 
negative, the complex  conjugated  expressions of  (21) and (22) 
apply. For the cusp correction  factors, the role of the caustic 
distance  parameter u is taken by h " 4 W .  For this param- 
eter larger than  2, the  cusp correction  factors  may be 
approximated by unity. 

VI. APPLICATION OF CAUSTIC CORRECTIONS 

So far we have not considered the transition from  the Airy 
function  corrections  (10) and (12) to the cusp correction 
factors (21) and (22). A rigorously derived transition requires 
that the series expansion (15) of the phase function also 
include a  third-order  term. The phase integral for this general 
case has been evaluated numerically by Pearcey [ 101 . In order 
to maintain the speed of the GTD field calculations also in the 
vicinity of caustics, a less rigorous approach was adopted 
as described in the following. In a region with  four singly 
diffracted rays from  a disk, both  the Airy correction  factor 
(10) and the  cusp correction  factor  (21) are evaluated for 
each ray and  the GTD ray contribution is multiplied  by the 
correction  factor which has the smaller amplitude. As a result, 
the Airy function  correction  factor will be utilized when  the 
field point is close to a caustic but away from  a cusp of 
caustics. When the field point is close to a cusp of caustics, 
the cusp correction  factor (21) is utilized. 

If a caustic correction is required in a region with two 
singly diffracted rays from a disk,  either the caustic  shadow 
term (1 2) is added to the GTD field or one of the two singly 
diffracted rays is modified  by the cusp correction  factor 
(22). The  caustic  shadow term  (12) exists only if h"(@') 
possesses a  zero; Q0', where h'(@,') and h"'(@o') have the 
same sign. In this case the  shadow term is used when 

Otherwise the cusp correction  factor is used. 
The  computer program used in the following examples 

calculates the far-field from arbitrarily  positioned  sources near 
a finite circular cylinder. In addition to the  direct and  the 
reflected  ray,  the  program  takes into  account  the singly 
diffracted rays from each end surface and  creeping waves. The 
diffracted rays are corrected  for axial and  nonaxial  caustics 
and  the creeping waves include penumbra region corrections. 
The  nonaxial  caustic corrections used are those  described in 
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Fig. 4. GTD field  across  cusp  of  caustics.  (a)  Without  caustic  correc- 
tions. (b) With caustic  corrections.  Direct  and  reflected  ray  are 
of equal magnitude. - Total GTD  field. - - - -  .Direct and  reflected 
rays. - Singly  diffracted  rays. - - - - Sum of singly  diffracted  rays. 

Sections IV and V. Details of  the numerical  evaluation of 
the  corrections are given in Appendix B. 

Figs. 4(a) and 4(b)  show GTD fields without  and  with 
caustic corrections, respectively. The figures show  how the 
field varies through a  cusp at q5 = 180" as  a function  of  the 
angle 8 .  The field originates from a half-wave dipole placed 
above the end  surface of a  vertical, f i i t e  circular cylinder. 
The radius of  the cylinder is 10 cm and the  frequency 10 GHz. 
The  dipole is parallel to   they axis in Fig. 1 where, if the circle 
indicates the  end surface of  the cylinder, the position of the 
source is  given by p x  = 7.6 cm and pz  = 6 cm. The resulting 
caustic is shown in thick line on Fig. 2. The direct  ray,  the 
reflected ray,  the individual diffracted rays, the total  diffracted 
field and the  total field are  shown. The  diffracted rays are 
numbered according to Fig. 3 so that  the  central ray has 
number 2. The two identical noncentral rays are numbered 1 
and 3 .  The ray numbered 4 is left  unaffected by the passage of 
the cusp of caustics. The  cusp  correction  factors  modify 
the  other  three  diffracted rays  in such a way that  the  total 
diffracted field becomes continuous across the cusp. 

Figs. 5(a) and 5(b) show,  for  the same configuration  as  in 
Fig. 4,  the GTD field without and with caustic corrections, 
respectively, as a  caustic is crossed well away from  a  cusp of 
caustics. The field is calculated for Q = 166" as  a function  of 
8. The field point  enters  the caustic region at 8 = 33" and 
leaves it  at 8 = 44".  At 8 = 33" the caustic  shadow term, 
indicated  as  2 + 3, builds up  before the crossing of the caustic 
curve. Here ray 2 and 3 come  into existence. These rays  are 
modified  by the Airy function  correction  factors (10) while 
rays 1 and 4 are not affected  by the passage of  the caustic. 
At 0 = 44" rays 1 and 2 disappear. Their disappearance is 
compensated  for by the caustic  shadow  term 1 + 2. 

In the above  examples, the direct and  the reflected  rays 
are large and  the caustic  appears to have only  a minor effect 
on the  total field except, of course,  at the caustic  itself  where 
GTD predicts an infinite field. In regions where only  the 
diffracted field is present,  the influence of  the caustics  could 
be much  more noticeable. If the  patterns in Figs. 4 and 5 are 
continued until 8 = 180", the caustic region below the end 
surface is crossed where the direct ray is shadowed by the 
cylinder. 

I I 

Fig. 5.  GTD field  across  caustic  away  from  cusp  of  caustics.  (a)  With- 
out caustic  corrections. (b) With  caustic  corrections.  Direct  and  re- 
flected  ray  are  of  equal  magnitude. - Total GTD field. ----Direct 
and  reflected rays. - Singly  diffracted  rays. - - - -  Sum of singly 
diffracted  rays. 

t 

i 
Fig. 6 .  Measured and  computed fields  across  caustics  away  from  cusp 

of  caustics. - Measurement at 9.97 GHz on  Cylinder model. xxxx 
Computation. 

Unfortunately,  the field is difficult to calculate  in  this 
region due to the fact that some of the singly diffracted rays 
are also shadowed  by the cylinder. These rays are replaced by 
creeping waves on  the cylinder excited  at a point  on  the  end 
surface. The position of this point may change significantly for 
small changes  in the far-field direction and as a  result, the 
caustic phenomena  may  interfere  with penumbra-region 
phenomena. Neither this type of ray nor higher order  diffracted 
rays were included in the  computer program used, and  no 
computation is shown  in  this region. Instead. Fig. 6 shows the 
measured pattern  at Q = 166" with 8 varying from 0" to 180" 
to illustrate the field behavior in the lower region of space. 
The  computed  pattern  up  to 8 = 120" is also shown in Fig. 6 
and a good agreement  with the measurement is observed. 

VII. CONCLUSIONS 

We have considered  the field diffracted in a  circular disk. 
When the source is placed away from  the axis of  the disk, the 
diffracted field has caustics  which form diamond-shaped 
figures on  the far-field sphere.  Two  sets of  corrections to 
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the GTD field have been derived. One set of  corrections where CJ is defined in (8), and Ai (z) is the Airy function  of 
extends GTD to be valid across a caustic and  the  other set first  kind  defined through 
extends GTD to be  valid across a cusp of caustics.  The 7 

corrections are not restricted to  the circular  disk. In the 
general case, a  correction will depend on the local properties Ai (z) = L I m  COS (i t3 + z t )  dt. (-4.5) 
of the diffracting edge at  the point  of  diffraction. x 0  

The  corrections are not valid when both  the field point and 
the source point are close to  the axis of  the circular disk. In 
such cases, a substantial part of the edge may  take  part in the 

~- 

In the case of three  equispaced, nearly coalescent diffraction 
points,  the phase integral (A.l) assumes the approximate  form . 

diffraction  process, and the integral representation (1) of the 
diffracted field should be evaluated either numerically or 1 - 1 1  e i k ( ~ h " ( @ 2 ' ) 9 ' 2 + ~ h ( 4 ) ( 9 2 ' ) Q ' 4 )  dQ' (A.6) 
analytically. Based on  a  number of computer runs, it was 
concluded  that  the caustic  corrections derived in this  paper 
should be utilized only when either  the field point or the 
source point lies outside the two  cones about the  axis of the 
disk with cone angles equal to rad and apex  at the 

where assumptions similar to  those leading to (A.2) have 
been made.  Furthermore. we have utilized the fact that  the. 
integrand in (A.6) is an even function in @'. The substitution 

center of the disk. 

APPENDIX A 

TRANSFORMATIONS OF PHASE INTEGRALS 

(-4.7) 

is introduced  into (A.6) which then  becomes 
In the case  of two nearly coalescent diffraction points, @' = 

assumes the  approximate  form 
.1T 

-1 - 

e ds. (A.8) 

I -  dQ' (A.2) 
Since the  path of integration may be deformed  to become the 
real axis without changing the value of the  integral it follows 

where the integration  limits have been extended to infinity, in that 
recognition of the fact that  the  dominant  contribution  to  the 
integral  comes  from the region close to  the  stationary  point of h"(92 ' )2  

the phase, and,  furthermore, 9' has been replaced by 9' + 92'. 8 4 h ( 4 ) ( 0 2 ' )  
When the  substitution 

iT-i?k 

1 

(A.9) . 

is introduced  into (A.2), the integral is transformed into 
where the parabolic  cylinder function is defined through 

. 2  z 3 

= 2ae Ai (-0) 

APPENDIX 8 

NUMERICAL EVALUATION OF CAUSTIC CORRECTIONS 

The  formulas  for the caustic corrections  contain  either 
an Airy function Ai (u) or a parabolic  cylinder function 
D-,(te-in'4). In this  Appendix we list the  expressions  for 

(A.4) Ai (0) and D-lh(te-in'4) utilized in the  computer program 
described in Section VI. These expressions  represent a 
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compromise  between the accuracy and  the speed of the 
computation. The Airy function of the caustic corrections 
(1 0 )  and (1 2) is evaluated by means of 

Ai (u) = 0.35502805f(~) - 0.25881940g(~) (B.1) 

with f(a) and g(u) defined  by the series 

03 06 09 
f(u)= 1 -- +-- + ... (B.2) 

2.3 2-3-5.6  2-3.5.6.8-9 

[ 11, p. 4461. When the series are truncated  after  the  ninth- 
and  the  tenth-order  terms,  the resulting maximum error is 
less than  2  percent  for I u I < 2. While the Airy correction 
factor is put equal to  unity  for u < -1.2, the caustic  shadow 
term  may  require that  the Airy function be  evaluated  for u > 
2. Then the  asymptotic expression (14) is utilized.  The resulting 
maximum error is less than 3 percent. 

In the  computer program, the cusp correction  factors (21) 
and  (22)  are put equal to unity when the magnitude of  the 

‘ argument of D-,h(te-in/4) exceeds 2. For smaller arguments 

D ( te - in /4)  = 1.2162802y1(t) - 0.5813683y2(r) _ _  
2 

(B.4) 

is utilized  with yl(t) and y2(t)  defined by the  alternating 
series 

1 t4 1 t s  
4 3.4 42 3.4-7.8 

yl(t) = 1 - - - + - ___ - ... 

and 

[ l  1 ,  pp. 686-6871. The  maximum error  due  to  truncation 
after  the eighth-order terms is less than 1 percent  for  the 
absolute value of t less than  2. 
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