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Abstract: The paper presents various methods for the calculation of the field reflected from a subreflector in a
dual reflector antenna system. It is demonstrated that the physical-optics (PO) solution agrees well with the
geometrical theory of diffraction (GTD) for the copolar component. Significant discrepancies may appear for
the crosspolar component, and it is necessary to introduce additional fringe currents in the PO solution. If the
subreflector is located in the near field of the feed, special precautions must be taken. One can either subdivide
the feed aperture into a number of smaller subapertures for each of which standard GTD can be applied or an
alternative and more efficient method is to use complex ray analysis (CRA), where the directive feed is rep-
resented by a point source located in the complex co-ordinate space. Both methods are compared with PO
solutions taking the near-field effects into account. The theoretical results are verified experimentally for a

near-field illuminated offset hyperboloidal subreflector.

1 Introduction

The spacecraft antennas to be developed in the next
decade are going to be of increasing complexity. One
example is a dual reflector antenna with shaped surfaces
and many feeds operating simultaneously. For the analysis
of these types of antennas both fast and accurate software
must be available.

The geometrical theory of diffraction (GTD) is known
to be a very effective tool for reflector antenna analysis.
The physical-optics (PO) method is still the only practical
solution in the main beam region of a focused reflector,
but in the wide-angle sidelobe region GTD is superior to
PO, and this is also the case for the determination of sub-
reflector scattered fields. The results obtained with GTD
and PO always compare well for the copolar component
of the scattered field and the superiority of GTD is there-
fore more a question of computer time and a clearer inter-
pretation of the calculated pattern. However, for the
prediction of low crosspolar components, significant differ-
ences of the order of 10-20 dB between GTD and PO have
been found. With the present severe requirements to low
crosspolar fields for reflector antenna systems designed for
frequency re-use this ambiguity is not acceptable. It is
important to understand the nature of this difference and
this is attempted in the following, where subreflector scat-
tered fields are investigated by means of physical-optics
methods, asymptotic methods as well as moment methods.

The material presented here will be based on References
1, 2 and 16. The analysis of reflector antennas in general,
and subreflectors in particular, has received so much atten-
tion in the literature that an exhaustive bibliography
cannot be given here, but some important contributions
are listed, namely References 3, 10, 13, 14,15 and 19.

2 Survey of methods

The methods which will be discussed are:

(a) MM—method of moments. The scattering problem
is formulated as an E-field integral equation, which is
solved by the method of moments [12]. Only applicable to
rotationally symmetric reflectors

(b) PO—physical optics. The vector potential for the
scattered field is generated by surface currents
JPO = 2a x H', where i is the surface normal and H' is the
incident field
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(¢) PTD—physical diffraction theory. The vector poten-

. tial for the diffracted field is generated by surface currents

JPTP These are the so-called nonuniform fringe currents
[17]. For a curved edge the same expressions as for a
straight edge will be used, measuring the distance to the
edge along a geodesic

(d) GO—geometrical optics. The leading term in an
asymptotic expansion of the field reflected from a surface
for large values of the wave number k

(e) GTD—geometrical theory of diffraction. The leading
term in an asymptotic expansion of the field diffracted
from an edge. The classical diffraction coefficients were
derived by Keller. For practical purposes they are modi-
fied according to Reference 9 to correct the results at
reflection and shadow boundaries. Furthermore, a caustic
correction is included. Unless otherwise specified, the term
GTD will be assumed to include GO components in the
following

(f) APO—asymptotic physical optics. A description of
the diffracted field based on the first term of an asymptotic
expansion of PO [1]. Whenever APO results are shown in
the following, they are corrected at shadow and reflection
boundaries and at caustics in exactly the same way as
GTD

(99 CRA—complex ray analysis. An extension of GTD
to rays in complex space co-ordinates.

Traditionally, subreflectors have been synthesised by
GO and analysed by PO or GTD. Both the latter methods
have limitations, however, and in order to discover these it
is convenient to have alternative methods such as MM,
although this method can never be an alternative due to its
heavy demand on computer storage and CPU time. Simi-
larly, PTD and APO are techniques which are included
only to shed light on the discrepancies between PO and
GTD. The last method, CRA, may well be the ultimate
approach for problems which cannot be handled satisfac-
torily by PO or GTD. The method has already been
studied extensively [4-8, 18], but it is not yet in a form
where it can be applied as easily as PO and GTD.

3 Feed models

It is customary to assume that the feed can be considered
to be a point source with an angular-dependent radiation
pattern. For a balanced feed, therefore, the field can be
expressed, in a feed centered co-ordinate system, as

el'kr

E(r, 0, ) = f(0)sin ¢f + cos p) - (1)
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Since the problem is linear there is no restriction in the
applicability of the results due to the choice of linear pol-
arisation. The expression in eqn. 1 can only be realised
approximately by an actual feed since it only satisfies
Maxwell’s equations asymptotically for large values of kr.
For some of the methods to be discussed eqn. 1 will prove
inadequate, since the subreflector is in a region where the
field cannot be described by eqn. 1. A correct description
of the field may then be obtained through a far field to
near field transformation of eqn. 1 via Hansen’s spherical
vector functions.
Three particular choices of f(8) will be used frequently:

/) =1 )
f(6) = 10 ~(@/20)(6/60)2 (3)
f(6) = cosz<210%) @)

Eqn. 2 models an isotropic source. Although of no practi-
cal interest, eqn. 2 has the interesting property of a negligi-
ble near-field zone, whence eqn. 1 is accurate for all
relevant values of kr. The standard feed pattern eqn. 3
models a corrugated feed with a taper of « dB at the angle
0, . This model is physically most relevant. With eqn. 3 it is
no longer possible to use eqn. 1 in the intermediate near
field where, in particular, the phase of eqn. 1 becomes inac-
curate. The range of kr beyond which eqn. 1 is applicable
depends on « and 6,. Eqn. 4 does not represent a useful
physical feed, but is included as an academic model, which
has the property that both the far field and its derivative
are zero for 6 = 6,. It is evident that eqn. 4 can only be
produced by a very large aperture and therefore eqn. 1 is
only applicable for very large values of kr. In Fig. 1 the
angular dependences of the amplitude of the magnetic field
for eqn. 4 in the far field and for kr = 44.43 are shown.
Notice the radial component H,, which is absent in the far
field, and the difference in shape of the transverse com-
ponent H,. Suppose that the feed illuminates a subreflector
placed such that the edge coincides with 8 =6,. An
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Fig. 1 Far field and near field at kr = 4443 for feed model (eqn. 4)
with 0, = 28.7°
- far field
----- near field
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uncritical use of eqn. 1 will then produce zero edge illumi-
nation and therefore no depolarisation, whereas the true
edge field has a finite value, producing a depolarised field
which increases as the subreflector is moved closer to the
feed. The significance of the difference between eqn. 1 and
the correct near field will be illustrated later by PO calcu-
lations based on either an incident field given by eqn. 1 or
by the correct near field represented by a spherical vector
wave expansion.

4 PO versus GTD

In the physical-optics method it is assumed that the
surface current is 2#2 x H' on the illuminated side and zero
on the shadow side. At the edges of the reflector this
current is truncated, but, in reality, the edges will give rise
to so-called fringe currents in addition to the PO current.
These fringe currents are determined from a canonical
problem of a plane wave incident on a perfectly conduct-
ing halfplane. Let the halfplane lie in the xz-plane with the
edge along the z-axis, and let the direction of the incident
plane wave be given by the vector k. The total current, J,
then has the following components along x and z:

Jx=Jf°F(2 /k'—xcos ﬁ) 3
i 2
J, = J‘:OF<2 /-k—’f cos 9—')
n 2

% sin %
*JThx & (k JEC — k, JE%) exp i(k, — k)x (6)
t

y

where JP? and JP? are the PO components of the current,
F(x) is the Fresnel function, k,, k, and k, are the com-
ponents of k, k, = \/k% + k} and </§,- is the angle between
the xz-plane and the plane spanned by Z and k. The PTD
current is now defined as the difference between the actual
current and the PO current, namely

JPTD =J - JPO (7)

Finally, the vector potential, A, for the scattered field is
given by:

ikR
A =451°; HJER— da @®)
S

where S is the surface, R is the distance between integra-
tion point and field point and J may be either of the
current contributions defined above.

The properties of PO may be briefly summarised as
follows:

(@) the method is very time consuming, except in the
case of a focused reflector

(b) there is no restriction on the complexity of the
source pattern

(c) the surface currents are slightly in error due to the
curvature of the reflector

(d) the edge currents are incomplete and PO cannot
predict depolarisation unless corrected by PTD.

The limitation in (a) could be qualified as follows: the
demand on CPU time is proportional to the number of
integration patches used in the evaluation of eqn. 8. For a
subreflector the patches should not exceed 0.8 x 0.84% to
obtain a dynamic range of 40 dB. In the following, many of
the subreflectors analysed will be rotationally symmetric,
and in these cases the symmetry has been exploited to
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reduce eqn. 8 to a one-dimensional integral. The integra-
tion can then be performed with a Romberg scheme and
convergence is assured at all pattern levels.

The properties of GTD may be briefly summarised as
follows:

(a) the method is very fast

(b) it is only valid for feeds which can be modelled by a
point source

(c) the subreflector must be at least 51 in diameter,
unless multiple diffractions are included, and the radius of
curvature of the surface must exceed 54 everywhere.

The first case we shall examine is the rotationally sym-
metric hyperboloidal reflector shown in Fig. 2. In order to

Fig. 2  Rotationally symmetric subreflector

Eccentricity of hyperbola e = 2
Feed at external focus
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Fig. 3  Scattered field from subreflector illuminated by isotropic source
Copolar amplitude
PO
—-— GTD
----- PO + PTD
MM
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avoid any near-field effects from the feed we use the model
eqn. 2. Since the crosspolarisation is of principal interest,
all the patterns shown are calculated in a plane bisecting
the right angle between E- and H-planes. In Fig. 3 the
amplitude of the copolar beam is shown. All the methods
shown agree well, except close to the caustic at § = 0°,
where GTD exhibits slightly larger ripples than the other
methods. In Fig. 4 the phase of the copolar pattern is
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6 , degrees

Fig. 4  Scattered field from subreflector illuminated by isotropic source
Copolar phase

plotted. Good agreement is again found for all methods,
except for an almost constant phase difference between
MM and the other methods. The reason for this is that the
MM solution has not completely converged yet. It was
found that from a certain point the amplitude of the MM
pattern had converged to within 1/10 dB, whereas increas-
ing the number of unknowns would still affect the phase of
the pattern significantly. Fig. 5 finally shows the amplitude
of the crosspolar patterns for various methods. As pointed
out previously, PO cannot account properly for depolar-
isation, and Fig. S clearly shows that PO predicts a cross-
polar field which is far too small compared with GTD and
MM. The close agreement between GTD and MM leads
us to believe that they show the true level of cross-
polarisation. In order to correct PO, the PTD component

207



he’]

—— G

-10

T
= ket ettt e e = e
)
o

dBi

-40 1 ! L 1 L M|
0 10 20 30 40 50 60 70
6, degrees

Fig. 5  Scattered field from subreflector illuminated by isotropic source
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was added and a much better agreement with MM is now
obtained. The remaining difference between PO + PTD
and MM is ascribed to the fact that the present structure
has a curved edge and the PTD currents will be com-
pressed inside the edge. Finally, an APO solution is also
shown. The APO pattern agrees very well with the PO
pattern, except close to the caustic, and we conclude that
the size and shape of the subreflector are such as to permit
the use of asymptotic methods.

The above investigation was repeated for the realistic
feed pattern (eqn. 3) with o = 10 and 6, = 18.925°. In Fig.
6 the amplitude of the copolar beam is shown and good
agreement is found for all the methods shown, even close
to the caustic since the caustic effects have been decreased
by 10 dB relative to Fig. 3. In Fig. 7 the phase of the MM
solution is shown for a varying number of unknowns. Even
for the best solution shown, the phase has not completely
converged, in particular not close to the caustic. Since the
beam radiated by the feed is quite narrow with a 10 dB
edge taper, eqn. 1 can no longer be used to calculate the
incident field at the subreflector. The difference in the inci-
dent field at the subreflector when calculated from eqn. 1
compared with the true near field lies almost exclusively in
the phase for the geometry considered, and in Fig. 7 the
near-field expression was used. In Fig. 8 is shown the
phase of the copolar beam using PO; both when the inci-
dent field is given by eqn. 1 (labelled far field) and when
the near field is used (labelled near field). It is evident that
the difference in phase can be very significant. Since the
MM solution has not converged completely, we have no
absolute reference, but a comparison between Figs. 7 and 8
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Fig. 7  Scattered field from subreflector illuminated by feed providing
10 dB edge taper
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MM, 98 rings
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shows that the curve labelled near field in the latter case is
probably close to the true phase curve.

Consider now the curve in Fig. 8 calculated by GTD.
The method requires that the field can be described as rays
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Fig. 8  Scattered field from subreflector illuminated by feed providing

10 dB edye taper

Copolar phase

_ PO, far field

..... PO, near field
GO + GTD

....... MM

and it is necessary to use eqn. 1 to represent the feed. This
does not, however, have the same disastrous effect on
GTD as on PO. To understand this, consider reflection in
an infinite plane placed in the near field of the feed. The
reflected field can be found exactly by image theory and
obviously GO will describe the reflected field accurately.
On the other hand, PO requires that the currents on the
plane are calculated and the phase error introduced here
will remain in the reradiated field. In the present case the
reflector is not plane, and the field includes edge diffracted
rays, whence it must be expected that the near-field effect
will also be present in GTD, although less pronounced
than in PO. Fig. 8 shows that this is indeed the case.
Finally, Fig. 9 shows the amplitude of the crosspolar com-
ponent. The agreement between the MM solution and the
GTD solution is here, as in Fig. 5, very good, whereas PO
again predicts a crosspolar level which is far too low (the
PO solution plotted is ‘far-field’; PO ‘near-field’ deviates
less than 1 dB everywhere).

To illustrate the importance of using the correct near
field from the feed in PO, a calculation with the feed model
(eqn. 4) was made for a convex, spherical subreflector with
the edge at § = 28.68° and a diameter of 104. Fig. 10 shows
the co- and crosspolar patterns with PO (using eqn. 1) and
APO and good agreement is found. If, however, the radial
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component, H,, of the incident field is included in APO,
the crosspolar field decreases by 30 dB. In Fig. 11 the
correct near field from the feed is used, and results are
shown where only the transverse component, H,, is used

Or

dBi

-50 1 I ! L I 1 g
0 10 20 30 40 50 60 70
0, degrees
Fig. 9  Scattered field from subreflector illuminated by feed providing

10 dB edge taper

Crosspolar amplitude

GTD
....... MM

and where the total incident H-field is used. It is thus
evident that neglect of near-field effects of the feed may
lead to an overestimation of the crosspolar field in PO, as
well as to a phase error in the copolar field. Finally, Fig. 11
shows that PTD adds approximately 10 dB to the cross-
polar field. It should be noted that the erroneous cross-
polar component in Fig. 10 has a slow phase variation,
which would make it reappear in the secondary pattern,
whereas the crosspolar lobes in the PO + PTD result in
Fig. 11 have a 180° phase shift from lobe to lobe.

5 GTD versus CRA

It has now been shown that when the subreflector is in the
near-field range of the feed, GTD based on eqn. 1 is no
longer applicable. The alternative, to use PO with a near-
field expansion of the feed and correcting with PTD, is
highly inefficient, and it is necessary to search for a cor-
rected GTD approach. One possibility is to split the feed
into a cluster of point sources [11]. This has been tried for
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a geometry very similar to that in Fig. 2, only the semi-
apex angle was 17°, the ellipticity of the hyperboloid was
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Fig. 10  Feed model (eqn. 4) illuminating spherical subreflector
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1.67 and the distance from the feed to the subreflector
13.194. The feed model is eqn. 3 with « = 15 and 6, = 17°,
corresponding to a corrugated feed with an aperture diam-
eter of about 4.84 and semi-apex angle 9.5°. The feed aper-
ture was split up into nine overlapping subapertures by
applying suitable weight functions to the aperture field.
Fig. 12 shows the contour lines of the weight functions,
each shadowed area being a maximum for one function.
The radiation from each subaperture is then represented as
coming from a point source. Since these point sources are
different in both radiation pattern and orientation, the
procedure is cumbersome. The results obtained with nine
sources are labelled GTD-9 in contrast to the results
obtained with one source labelled GTD-1.

A much more efficient way to model the feed in the near
field is the complex source point model used in CRA. The
field from a point source:

en‘kR
"= %R
R=/p*+ 2% — b* —i2bz ©)
pr=x%+ )2

where R, the distance from the source to the field point,
represents, for R # 0, an exact solution to Helmholtz’s
equation for an isotropic source in the complex point (0, 0,
ib). Since R is complex, it is important to define the proper
branch cuts. We shall choose the branch cuts which make
the real part of R positive to obtain a field travelling away
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from the origin in all directions on the far-field sphere. For
z =0 we have R = —i,/b? — p? and the field distribution
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here is shown in Fig. 13 for different values of b. In the far
field an asymptotic expansion of R gives

u= ekbcoso ikr (10)
kr

To model a balanced feed as eqn. 3 the scalar model (eqn.
9) is adequate, since the vector nature of the field is as in
eqn. 1 in both the near field and the far field. For feeds
with different E- and H-planes and/or pronounced side-
lobes, more complicated models involving several complex
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sources are needed. Figs. 14 and 15 show a comparison
between the field from the above mentioned corrugated

1

2
Pl A

Fig. 13  Complex source field in aperture plane
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Fig. 14  Field from corrugated feed
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]

Fig. 15

Field from complex source

feed and the field from a complex source point on spheres
of increasing radius, and remarkably good agreement is
observed in the angular range of interest. Since the field
originates from a complex point, it must travel along rays
in complex space to reach the real field points of physical
interest. This means that also the reflection point on the
reflector surface will, in general, be located in the complex
space, and it therefore becomes necessary to make an ana-
lytical continuation of the surface into complex co-
ordinates. This is a simple matter when the surface is given
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by an analytical expression [18], and it turns out to be
possible also when the surface is tabulated. The calculation
of the reflected field takes place as for a real source point,
but the caustic distances will be complex. Also, the edge
diffracted rays must be included in CRA. The diffraction
coefficients in Reference 9 have been generalised to
complex angles [2], and the only new problem facing the
user of CRA is the definition of the shadow boundary,
since the reflection point lies on the complex continuation
of the surface and therefore never crosses the reflector edge
in real space. The answer is found from the solution of the
halfplane problem [6] and involves a combination of the
real and imaginary parts of the angle between the incident
ray and the surface.

Fig. 16 shows a comparison of the results of GTD-1 and
GTD-9, and the most significant difference lies in the
copolar beam, where both amplitude and phase differ. In
order to check GTD-9, Fig. 17 shows a comparison
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Fig. 16  Scattered field from subreflector
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Fig. 17  Scattered field from subreflector
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Fig. 18  Scattered field from subreflector

Comparison between GTD-9 and CRA

between GTD-9 and PO (using the feed near-field and
PTD corrections) and both amplitude and phase of the
copolar beam agree very well. Finally, in Fig. 18, GTD-9
has been compared with CRA and again very good agree-
ment is found, in this case also for the crosspolar field
(except close to the caustic at 8 = 0°).
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6 Theory versus experiment

To confirm the accuracy of PO with near-field terms
versus GTD, the configuration shown in Fig. 19 was calcu-
lated and measured. The feed is a smooth walled conical
horn with semi-flare angle 15° and aperture diameter 4.94.
The distance from the feed phase centre in the external
focus of the hyperboloidal reflector to the surface is 144
and the maximum diameter of the reflector is 15.674. The
feed is horizontally polarised and the pattern in the sym-
metry plane is shown in Figs. 20 and 21. In Figs. 22 and 23
the measured, scattered field in the symmetry plane is com-
pared with both GTD (using the model in eqn. 1) and PO
(using the feed near field). It is clear from Fig. 19 that the
feed will block part of the reflector, and in Figs. 22 and 23
the theoretical curves include a contribution from the field
scattered by the feed. The excellent agreement between PO
and experiment confirms that the copolar beam can be
accurately calculated by this method.

7 Conclusion

It has been demonstrated that, if the subreflector is in the
far field of the feed, both PO and GTD accurately predict
the copolar beam, while only GTD is accurate with respect
to the crosspolar component. If the subreflector is in the
near field of the feed, PO predicts the copolar beam accu-
rately only if the correct incident near field is used, and the
crosspolar component only if corrected by PTD. In this
case GTD fails, particularly with respect to copolar phase,
and must be replaced by CRA.
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