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Abstract—This contribution deals with the problem of recon-
structing the extreme near-field of an antenna starting from the
field measured at a larger distance. The presented method has
several applications, including but not limited to antenna diagnos-
tics, suppression of spurious contributions from the measurement
system, or artificial removal the currents flowing on mounting
structures or cables. The capabilities are illustrated by processing
of field data obtained from spherical near-field measurements of
a horn antenna and a radiometer antenna mounted on a satellite.

I. INTRODUCTION

In the last decade there has been a growing research effort

aimed at reconstructing the extreme near field of an antenna

from the field measured in a classical near-field measurement

acquisition system. Several new methods have emerged, in-

cluding mode-based methods such as the SWE-PWE method

[1], or methods based on discretization of integral equations

[2]- [15], e.g., the source reconstruction method (SRM) and the

Inverse Method of Moments (INV-MoM). A common property

of these new methods is that there is no theoretical limit on the

resolution whereas the resolution in practical environments is

limited by the noise level of the measured data. The classical

application area of these methods is antenna diagnostics where

electrical or mechanical errors can be identified by inspection

of the reconstructed near field. However, the integral-equation

based methods [2]- [15] allow the field to be reconstructed

on an arbitrary 3D surface enclosing the antenna which opens

up a range of new applications. The new applications include

but is not limited to artificial suppression of currents flowing

on a part of the enclosing surface, e.g., a cable or a support

structure, as well as pattern enhancement of noisy, truncated,

or irregular measurements.

In this contribution we review the recently introduced

higher-order INV-MoM [15] which is more computationally

expensive than mode-based techniques, but allows for recon-

struction of fields on arbitrary 3D surfaces. The smooth current

expansion provided by the higher-order formulation along with

a rigorous regularization scheme improve the stability and

make the algorithm more robust against noise while providing

computational savings. Nevertheless, the INV-MoM method is

only competitive for small and medium-sized antennas. The

INV-MoM and the mode-based SWE-PWE technique have

been integrated into a single flexible software tool, DIATOOL,

allowing field reconstruction using the most suitable algorithm

for a specific application. Some of the processing capabilities

of this tool are illustrated below with two examples based on

measured field data obtained in the DTU-ESA spherical near-

field test facility [16]. Both examples show a classical antenna

diagnostics problem and the second one also illustrates the

possibility of reconstructing details of the measured patterns

which were not directly available due to noise.

II. HIGHER-ORDER INVERSE METHOD OF MOMENTS

The higher-order INV-MoM [15] was introduced recently as

an extension of previously available integral-equation based

reconstruction techniques [2]- [14]. The method is aimed

at computing tangential electric and magnetic fields on the

reconstruction surface S enclosing an antenna, based on fields

measured at discrete points outside the surface. On the recon-

struction surface, the equivalent electric and magnetic surface

current densities are defined as

JS = n̂×H (1a)

MS = −n̂×E, (1b)

where E and H are the fields just outside the surface of recon-

struction. These equivalent currents are those corresponding

to Love’s equivalence principle since they produce zero field

inside S. They also correspond to the tangential physical fields

one would actually measure on S.

The measured field can now be written as

E
meas(r) = −η0LJS +KMS (2)

where η0 is the free-space impedance and the integral opera-

tors L and K are defined as

LJS = jωµ0

[
∫

S

JS(r
′)G(r, r′) dS′

+
1

k2
0

∫

S

∇′

S · JS(r
′)∇G(r, r′) dS′,

] (3a)

KMS =

∫

S

MS(r
′)×∇G(r, r′) dS′, (3b)

where k0 is the free-space wavenumber and G(r, r′) is the

scalar Green’s function of free space. Equation (2) is referred

to as the data equation, since it relates the measured data

E
meas and the unknown surface current densities JS and MS .

This inverse source problem has been formulated previously

by several authors, including [2], [4]- [12].
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Love’s equivalent currents in (1) constitute just one set

of possible equivalent currents that radiate exactly the same

field E
meas outside the reconstruction surface, but non-zero

fields inside. The formulation is thus ambiguous and the

desired physical current densities in (1) can only be obtained

if additional a priori information is imposed [3], [14]. The

desired currents in (1) are obtained by inforcing the a priori

information that the fields radiated by (JS ,MS) inside S must

be zero. The formulation of the required boundary condition

for the electric and magnetic fields leads to the equations

−η0n̂× LJS +

(

n̂×K +
1

2

)

MS = 0, (4a)

−

(

n̂×K +
1

2

)

JS −
1

η0
n̂× LMS = 0 (4b)

for r ∈ S. These expressions are referred to as the boundary

condition equation.

A. Discretization

The surface of reconstruction is discretized using curvilinear

patches of up to fourth order. The electric and magnetic surface

currents on each patch are expanded as

X =

M
u

∑

m=0

M
v

−1
∑

n=0

aumnB
u

mn +

M
v

∑

m=0

M
u

−1
∑

n=0

avmnB
v

mn (5)

where X = [J,M], aumn and avmn are unknown coefficients,

Mu and Mv are the expansion orders along the u- and v-

directions, and B
u
mn and B

v
mn are higher-order Legendre basis

functions [17]. The current expansion above is then inserted

in the data equation (2) and two orthogonal test vectors (θ̂, φ̂)
are chosen at each measurement sampling point. This readily

leads to the matrix equation

Āx = b, (6)

where x is a vector of unknown basis function coefficients,

b contains samples of the measured field, and Ā is an M ×
N matrix with elements representing the field radiated by a

particular basis function.

The current expansion is also inserted in the boundary

condition equation (4) and here we choose a quasi-Galerkin

scheme [15] which was found to perform better than pure

Galerkin testing. This leads to the matrix equation

L̄x = 0, (7)

where L̄ is a P × N matrix, whose elements represent the

field radiated by a particular basis function, weighted by a

particular testing function.

The discretization described above differs from other meth-

ods [2]- [14] in two important aspects. First, the geometry

and unknown currents are represented by smooth polynomial

functions. This results in improved efficiency, enhanced accu-

racy, and better resolution properties of the algorithm. Second,

the testing of the boundary condition operator is performed

on the actual surface of reconstruction. Other methods that

include the boundary condition operator [3], [13], [14] employ

an λ/10 inward offset version of the surface of reconstruction

in combination with Dirac delta functions.

B. Regularization

The matrix equation (6) represents a discrete ill-posed

problem and the singular values of A therefore decay to zero

without any gap in the spectrum [18, p. 20]. To obtain a well-

posed solution to the problem min ‖Āx− b‖2 regularization

is needed by imposing a priori information about the solution.

The a priori information used here is that of equation (7),

i.e., the unknown currents on the reconstruction surface should

satisfy the boundary condition. This a priori information not

only ensures that the desired Love’s equivalent currents are

obtained, but also serves the purpose of making the solution

well-posed. This differs from previously published works, as

will be explained below.

A regularization method suitable for this purpose is that by

Tikhonov, in which the regularized solution xλ is determined

by solving the least squares problem [19]:

min

{

‖Āxλ − b‖2
2
+ λ2‖L̄xλ‖

2

2

}

. (8)

The regularization parameter λ determines the weight given

to minimizing the residual norm relative to the regularization

term. It should be noted that this regularization scheme is

fundamentally different from those of [3], [13]- [14], because

the data equation and the boundary condition equation are

used separately. If λ = 0 is used in the above expression,

no regularization is applied, and x0 equals the standard least-

squares problem, which is useless since it is dominated by

rapid oscillations due to noise. When λ2 is increased, more

weight is put to the regularization term and x∞ = 0 in

case L has full rank. A method for obtaining the optimum

regularization parameter is the L-curve method [20].

III. APPLICATION EXAMPLES

The higher-order INV-MoM is now used to reconstruct the

extreme near field for two practical cases: A corrugated horn

antenna and three circular patch antenna elements in a large

radiometer configuration.

A. Corrugated horn antenna

The corrugated horn antenna considered here is shown in

Figure 1. The antenna is mounted on a metal frame which is

covered by absorbers and the radiation pattern was measured

in the DTU-ESA spherical near field test facility [16]. The

radiation pattern at 10 GHz is shown in Figure 2 where an

unexpected high on-axis cross-polar field component can be

observed. The near field is then reconstructed on a circular

cylinder as shown in Figure 3. The front face of the cylinder

is located at the horn aperture at z = 0 and the radius of the

cylinder corresponds to the actual horn radius (58.2 mm). The

cross-polar field component radiated by the reconstructed cur-

rents is also evaluated in front of the aperture at z = λ/4 (see

Figure 4) revealing a more clear picture of the reconstructed

near field, see Figure 4. It is observed that the cross-polar field
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in front of the aperture looks distorted and lacks the expected

symmetry.

The far field radiated by the reconstructed currents is also

shown in Figure 2 along with the field obtained by truncating

the measured SWE at the noise floor. At field levels below -

40 dB, the field obtained by truncating the SWE looks like

a low-pass filtered version of the noisy measured pattern.

However, it is observed that the reconstructed far field do not

agree with the truncated SWE field. The INV-MoM includes a

priori information about the size and shape of the antenna, and

one can therefore hope that the reconstructed pattern is more

accurate than both the noisy measured pattern and the one

obtained by truncating the SWE. It is obviously only possible

to determine the most accurate pattern if the exact pattern

is known and this was explored by using synthetic measured

data. The radiation pattern of a corrugated horn, similar to

the horn considered above, was evaluated by an accurate horn

modeling tool and random noise was added in order to obtain

a SWE with the same noise floor as the one obtained by the

real measurements. The INV-MoM was then invoked with the

noisy far field data as input. The surface of reconstruction

was conformal to the geometrical model used in the horn

modeling tool. Figure 5 shows the reference pattern obtained

by the horn modeling tool, the noisy synthetic measurements,

the reconstructed pattern obtained with INV-MoM, and the

pattern obtained by truncating the SWE at the noise floor.

The scale on the figure is relative to the co-pol peak at θ = 0
and a random cut at φ = 46◦ has been selected. It is seen that

the reconstructed pattern (dashed blue curve) captures very

fine details of the reference pattern (black circles) whereas the

truncated SWE pattern is simply a low-pass filtered version of

the noisy measured pattern. This result leads to the conclusion

that the INV-MoM can be used to improve the measurement

accuracy and reconstruct details of the measured pattern which

are not directly available due to the inherent measurement

noise. This is accomplished by utilizing the information about

the location, size, and shape of the antenna. Figure 6 shows

the spectrum of the SWE coefficients for the reference field,

the synthetic measured field, and the reconstructed field. It is

observed that the INV-MoM is able to recover a part of the

spectrum that was not readily available due to noise.

B. Radiometer antenna elements

The second test case considers three out of 69 circular

patch antenna elements in the MIRAS instrument on ESA’s

SMOS satellite (see Figure 7). The radiation pattern of each

antenna unit was measured at the DTU-ESA spherical near

field test facility [16]. During this measurement campaign, two

antenna units (BC03 and A01) were found to produce a higher

cross-polar field than expected. Figure 8 shows the pattern

of a correctly working unit (A01), a unit producing a 10 dB

higher cross-polar component (BC03), and a unit producing a

frequency-dependent cross-polar level (A05). These measured

fields were used as input to the INV-MoM algorithm and the

surface of reconstruction was chosen to be a small box enclos-

ing the element. The reconstructed cross-polar field compo-

Fig. 1. Measurement setup for the corrugated horn.

Fig. 2. Measured (solid red curve) and reconstructed (dashed blue curve)
radiation patterns of the corrugated horn. The pattern obtained by truncating
the SWE at the noise floor (n=13) is also shown (solid green curve). The
curve with a peak of −35 dB represents the cross-polar component.

Fig. 3. Reconstructed x- and y-components of the electric field in dB-scale
shown directly on the surface of reconstruction.

Fig. 4. Cross-polar component of the reconstructed field at the z = λ/4
plane. The scale is normalised such that 0 dB corresponds to the level of the
co-polar peak in the z = λ/4 plane.
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Fig. 5. Reference pattern (black dots), the synthetically measured data with
added noise (solid red curve), the reconstructed pattern (dashed blue curve),
and the truncated SWE pattern (solid green curve).
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Fig. 6. Power content of the SWE coefficients for the reference pattern (black
dots), the synthetically measured data with added noise (solid red curve), and
the reconstructed pattern (dashed blue curve).

nents on the top surface of the thermal insulation foil (z = −5
mm) are shown in Figure 9. The correctly working unit A01

(left column) produced a frequency-independent symmetric

cross-polar field component with a relatively low amplitude.

Unit BC03 (centre column) produced a much higher cross-

polar level and only two lobes instead of four. Unit A05 (right

column) produced a cross-polar field that increases slightly

with frequency and becomes more asymmetric at the highest

frequency. This shows that even small errors in the cross-polar

fields can be detected by the higher-order INV-MoM.

IV. CONCLUSIONS

This paper has described the higher-order Inverse Method

of Moments technique for reconstruction of the extreme near

field of an antenna. It’s capabilities were illustrated with

two antenna diagnostics applications where the reconstructed

near field revealed anomalies of the antenna under test. Fur-

thermore, an example was presented where the INV-MoM

technique was used to enhance the measurement accuracy

and reconstruct details of a measured pattern which were not

Fig. 7. Configuration of the MIRAS instrument on ESA’s SMOS satellite.
The three antenna elements investigated here are marked with red arrows.

directly available due to noise.
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