
Design and Validation of Compact Antenna Test

Ranges using Computational EM

O. Borries, P. Meincke, E. Jørgensen,

H.-H. Viskum, F. Jensen

TICRA

Copenhagen, Denmark

ob@ticra.com

C. H. Schmidt

Airbus Defence & Space

Munich, Germany

carsten.schmidt@airbus.com

Abstract—The design of modern Compact Antenna Test
Ranges (CATRs) is a challenging task, and to achieve strong
performance, simulation using computational electromagnetics is
a vital part of the design process. However, the large electrical
size, geometrical complexity and high accuracy requirements of-
ten mean that the available computer resources are not sufficient
for running the simulation. In the present paper, we highlight
some recent developments that allow for much larger, faster and
more accurate simulations than was possible just a few years
ago, and apply them to realistic ranges. The conclusion is clear:
Modern software tools allow designers of CATRs to achieve better
performance in shorter time than was previously possible.

I. INTRODUCTION

The task of finding the far-field characteristics of an antenna

can be completed using a variety of techniques, including

software modelling, small-scale models and real-life testing

of a full-size system in an antenna test range. In practice,

while a combination of these approaches are typically used in

various stages of the design process, the use of an antenna test

range is ubiquitous, particularly in the last stage of the design

where validation of the system is necessary. The obtained

measurements can then be compared to specifications and/or

numerical simulations.

For far-field measurements, a Compact Antenna Test Range

(CATR) is a common alternative to the outdoor far-field

ranges, allowing an indoor and fairly compact measurement

range. The key feature of a CATR is the Quiet-Zone (QZ)

it produces, which is a region in which the field behaves

like a plane wave: with uniform amplitude and phase and

with very low cross-polarization. However, the design of a

CATR is no easy task. In particular, there is a large number

of design variables to adjust when attempting to get optimum

performance.

Facing strict requirements on the total size of the config-

uration and quality of the QZ, quantities that are inversely

proportional, the design and analysis phase of a CATR design

is very demanding and often requires the use of Computational

Electromagnetics (CEM) as a simulation tool. Unfortunately,

with the large bandwidth requirements and complicated geom-

etry, simplifications are often necessary to run the simulations

within acceptable time frames [1], [2], [3]. Judging the impact

of these simplifications on the final results requires a great deal

of experience, and can be a barrier for achieving the target

performance of a system. There is great interest in using CEM

to optimize various aspects of a CATR design [4], [2], [5], but

one of the main problems has been the time required for the

analysis.

In the present paper, we consider some recent developments

in CEM and show how they allow much faster and more

accurate CATR simulations than were previously possible.

Beginning with a general discussion of the developments, with

emphasis on their benefits for CATR design, we then illustrate

the performance by performing a few parameter sweeps.

Finally, we address the most important concern regarding the

use of CEM in the design phase of an actual system, namely

validation of the results, by comparing the simulated results

against measurements of a CATR system from Airbus Defence

& Space.

II. ANALYSIS METHODS

There are three main approaches for analysing CATRs,

depending on the required accuracy and electrical size of the

system.

A. Geometrical Optics

Geometrical Optics (GO), possibly including diffraction by

means of Uniform Theory of Diffraction (UTD), has previ-

ously been a common analysis tool for CATR, particularly

when attempting to optimize the system [4]. With the progress

in computing power and CEM algorithms, it appears to be

used less frequently, at least for the later stages of the design

process. However, it still has several key features that justify

its use in CATR design:

• Strictly speaking, its time and memory requirements

are independent of the frequency. As such, for extreme

electrical sizes, it can be the only option.

• By disregarding UTD and only tracing reflected rays, GO

can allow users to gauge the ”ideal” performance of the

system, i.e. if no diffraction was present. This approach

has been used in the literature [6], and can allow more

efficient optimization by subtracting the feeds amplitude

taper from the quiet zone performance, isolating the

amplitude ripples due to diffraction.
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B. Physical Optics/PTD

A very popular algorithm for the analysis of CATRs, and

reflectors in general, is Physical Optics (PO), combined with

Physical Theory of Diffraction (PTD) [5]. While still an

asymptotic method, like GO/UTD, it is very accurate for large,

smooth structures. Unfortunately, it is typically much more

time-consuming than GO/UTD, in particular for dual-reflector

CATR because one typically needs to compute multiple inter-

actions between the sub- and main reflectors.

For Physical Optics on electrically large structures, GRASP

is often recognized as an industry leading tool, due to its

use of customized sparse integration rules which reduce the

number of samples of the integrand, resulting in much faster

computation. However, the main caveat of PO remains: The

computational time generally scales as O(f4), where f is the

frequency, such that doubling the frequency means that the

computation takes 16 times longer. To reduce this scaling,

there has been a large effort in recent years to develop acceler-

ated algorithms, also called ”fast” algorithms, that reduce the

scaling of PO to O(f2 log f), similar to how the FFT reduces

the scaling of the discrete Fourier transform. While some

”Fast-PO” algorithms were published in the last decade, it was

only recently [7] that algorithms were presented that provided

both sufficient speed-up and accuracy to allow their use in the

design of high-accuracy systems such as a modern CATR. In

GRASP 10.4, these algorithms have been implemented.

Figure 1 shows the time consumption compared between

GRASP 10.3 and GRASP 10.4 for a scenario where a

1m × 1m plate is illuminated by a plane wave at oblique

incidence, and its forward hemisphere near-field is computed

at a radius of 0.8m from the center of the plate. By increasing

the frequency, and thus the electrical size of the plate, we can

see that the algorithm indeed provides roughly the expected

reduction in scaling. Further, as illustrated by the Relative

RMS error curve, the accuracy is fully maintained throughout

the frequency range. It is worth noting that the algorithm

requires no user intervention - it is activated automatically if

beneficial, and all relevant parameters are adjusted as needed

by the program.

Furthermore, performing PTD on a CATR can be cum-

bersome for an entirely different reason: Since the serrations

are attached to the CATR, GRASP 10.3 users are required

to manually select the edges where PTD should be included

to avoid computing PTD on internal edges. This is time-

consuming and error-prone. In GRASP 10.4, an automatic

edge/wedge detection algorithm has been implemented, such

that GRASP only includes PTD contributions from external

edges.

C. Method of Moments

Method of Moments (MoM) is a full-wave method, meaning

that it takes into account all physical phenomena. It works

by discretizing the surface of the object using geometrical

patches, and then represents the current on those patches

using polynomial vector basis functions. MoM is accurate;

the expected dynamic range of the implementation in GRASP
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Fig. 1. Performance of the Fast-PO implementation in GRASP 10.4 for near
fields compared to the direct PO implementation in GRASP 10.3. The Relative
RMS Error between the fields obtained from direct PO and Fast-PO is shown
in cyan.

is about 60 dB for the default accuracy, and the accuracy can

be further improved if requested by the user. Since it takes

into account all phenomena, but requires O(f4) scaling of

memory and computational time, it is typically used only on

small-scale or simplified CATR models.

MoM can be accelerated by the Multi-Level Fast Multipole

Method (MLFMM), which has O(f2 log f) scaling. MLFMM

was implemented recently in GRASP, and was adapted to the

efficient Higher-Order (HO) basis functions used in GRASP,

which allow much lower memory requirements [8], [9] than

implementations based on Rao-Wilton-Glisson (RWG) basis

functions.

An annoying detail when creating meshes of the geometry

is the need for continuity in the mesh. This means that when

combining two different meshes, say, a mesh of the main

reflector combined with the mesh of the serrations, great care

must be taken to ensure that the patches are continuous, such

that current is allowed to flow between the patches.

In GRASP 10.4, this has been greatly simplified by au-

tomatically joining meshes that are connected, even if the

patches are not continuous [10]. This allows users to remesh

the complicated parts of the geometry, e.g. the serrations,

without being forced to consider connectivity.

III. EXAMPLES

In the following, we consider some CATR configurations,

illustrating how CEM can help in the design and analysis of

such a system. The designs are not meant as a suggestion

for an ideal CATR design, but as representative examples

to illustrate the speed, accuracy and efficiency of using the

various CEM algorithms outlined in the previous section.
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Fig. 2. Illustration of the offset single reflector system with rectangular rim
and serrations.

Unless otherwise mentioned, the calculations are performed

using GRASP 10.4 on a standard laptop with 16 GB memory

and a 2.6 GHz Intel Core i7.

A. Single reflector with serrations

As a first example, we consider a single offset reflector

system at 30GHz. The main reflector is a square reflector of

edge length L meters when projected onto a plane orthogonal

to the beam axis, excluding the ten serrations on each side.

Each serration is triangular and protrudes S meters from the

reflector, and the total size of the reflector is 1×1 meter. Thus,

we require that L+2S = 1. The focal length of the system is

1.5 meter, and the clearance between the feed and the lowest

part of the serrations is 5 cm. There are 10 serrations along

each side, such that the width of each serration is L/10 at

the base. The feed is modelled as a Gaussian Beam, with a

taper of −3 dB at the tip of the serrations. The quiet zone

is 0.5m × 0.5m, and is located 2.05 meter in front of the

centerpoint of the reflector. A sketch of the design is shown

in Figure 2. We note that the serrations are isosceles triangles,

and thus diffractions from the serrations at the corners of the

reflector will significantly disrupt the quiet zone.

As a first step, we compare the results obtained by MLFMM

with that obtained by PO/PTD, shown in Figure 3 for S = 0.1.

The sampling density of the field is λ/5, resulting in a quiet-

zone grid of 251 × 251 points. The correspondence is very

good, with the deviations below −80 dB, justifying the use of

the much faster PO/PTD (8.5 sec) instead of the more costly

MLFMM (5:31 min, 2.5 GB). Interestingly, the PO time is

roughly an order of magnitude lower than for GRASP 10.3,

which did not apply Fast-PO and thus required 87 seconds for

PO/PTD. For the full-wave simulation, GRASP 10.3 did not

include MLFMM and thus required 204 GB of memory for

an unaccelerated MoM solution.

The fast and accurate analysis demonstrated in this scenario

opens up a wide range of possibilities for design optimization.

In particular, optimization of serrations has been considered

Fig. 3. Comparison between PO/PTD and MLFMM in the quiet zone.

previously on small-scale models [4], [3], but these works

required either

• simplifying the geometry, and/or

• considering only electrically small structures, and/or

• using GO/UTD.

However, with the recent advances discussed in the previous

section, optimization of actual CATRs at realistic frequencies

is possible with full-wave analysis methods. Actual use of

optimization is outside the scope of the present paper, but

to illustrate the efficiency, Figure 4 shows how the length of

the serrations relative to the total size of the system can be

adjusted. The figure is a sweep across 50 values of S between

0.01 and 0.25, remembering that the total sidelength of the

system L+ 2S is kept fixed at 1 meter. As a quality estimate

of the Quiet Zone, we use the following measure:

Quality =
1

Ns

Ns∑

i=1

|Ei −M |2, (1)

where Ei is the co-polar component from the PO/PTD analy-

sis. M = 1

Ns

∑
Ei is the average of the co-polar field across

all Ns sample points.

We remark that this quality estimate is very dependent on

the taper of the feed, and thus cannot be used to compare the

quality of quiet zones provided by different feeds. However, it
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Fig. 4. Quality of the quiet zone relative to the length of the serration length.
The ’x’ marks the minimum of the curve.

allows a simple quantification, suitable for parameter sweeps

or even optimization of the geometry. The sweep is completed

in about 6 minutes.

However, when analysing the serrations, it is important to

keep in mind the limitations of PO/PTD. While larger serra-

tions are excellently approximated by PO/PTD, the accuracy is

reduced if small and/or geometrically complicated serrations

are considered.

To illustrate this, in Figure 5, we adjust the electrical width

of the serrations at the base, for S fixed at S = 0.1m, and

computes the Relative RMS between PO/PTD and MLFMM.

The Figure contains a discrete set of points, as only those

serration widths that allow the reflector edges to be completely

covered by the serrations are considered. In other words, L
divided by the serration width is required to be an integer.

As expected, PO/PTD provides excellent agreement for the

wide serrations but deteriorates to more than 1% once the

serration width is below 2.5λ. Note, however, that even

when the serrations are electrically small and/or geometrically

complicated, PO/PTD can still be very useful as a first stage

in an optimization.

B. Validation

To validate the performance against measurements, we

consider a dual reflector compensated serrated CATR, the CCR

75/60, from Airbus Defence & Space, one of the leading

manufacturers of compensated compact ranges. The general

setup of the system is shown in Figure 6 and Figure 7. The

main reflector is 7.5m × 6.0m, yielding a cylindrical quiet

zone with a 5 meter diameter. The geometry of the serrations

is quite complicated, and its implementation in GRASP was

discussed in detail in [5].

For the purpose of the validation, the probing measurements

were done at 4.2GHz and 12.0GHz with standard gain horns
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Fig. 5. Accuracy of PO/PTD as a function of serration width. The serration
length is 10λ.

Fig. 6. Geometry of the CATR and the measurement planes.

Fig. 7. Picture of the CCR 75/60 system.
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Fig. 8. Cuts in the QZ, as seen from the main reflector. Thus, the cut C3
corresponds to a movement along the x axis, with y and z fixed.

from Narda. The global coordinate system (xF, yF, zF) is

placed at the feed, with the x-axis going from feed to the sub

reflector and y-axis going to the QZ. The center of the QZ

coordinate system is (x, y, z) = (8.0895x̂F, 10.2480ŷF, 0)m.

The probing was done in the x, z plane, with y = −2.484m
at 4.2GHz and y = −2.216m at 12.0GHz. Four cuts through

the QZ were measured, as specified in Figure 8.

To perform computations on this system, we begin by ap-

plying Physical Optics and compute the nominal path through

the system:

1) Feed illuminates sub reflector.

2) Sub reflector illuminates main reflector.

3) Sub- and main reflectors illuminate QZ.

This computation takes a few minutes, and allows a quick

overview of the performance of the system. In particular, since

this analysis does not include any multiple interactions, the

result can be compared with the measurements to illustrate

where in the QZ such multiple interactions are most signifi-

cant.

Following the initial Physical Optics results, we now turn to

full-wave simulations. As shown in the schematic of the CATR

setup, the system also includes two absorbing structures, a

SERAP (to reduce illumination of the main reflector by the

feed) and a baffle (to reduce illumination of the QZ by the

feed). While these structures can be fully included in the

simulation, their geometry is quite complicated - instead, we

simply remove the mentioned contributions from the simula-

tion. Hence, the simulation order is:

1) Feed illuminates sub reflector.

2) Sub reflector illuminates main reflector.

3) Main reflector back scattering onto sub reflector.

4) Sub reflector back scattering onto main reflector.

5) Sub- and main reflector illuminates QZ.

Thus, the simulation takes into account up to third order inter-

actions between the sub- and main reflectors. All computations

are done by applying MLFMM. To illustrate the footprint of

the main reflector, and the complicated mesh that follows, the

mesh of the main reflector is shown in Figure 9. The simulation

at 4.2GHz requires roughly 7.4 GB of memory and about 47

minutes of simulation time on a modest computing server, with

2 Intel Xeon E5-2690 and 160 GB memory.

Fig. 9. Mesh of the main reflector.
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Fig. 10. Comparison between GRASP MLFMM and measurement at
4.2GHz of the Airbus CCR 75/60, amplitude.

Considering the C3 cut along the x axis, the results are

shown in Figures 10-11 for the amplitude and phase, respec-

tively. We see a strong agreement between the measurement

and simulation in amplitude, in spite of the simulation not

applying probe correction and not fully simulating the SERAP

and baffle absorbing structures as well as the effects of the

measurement chamber. The slightly poorer agreement for the

phase than for the amplitude is primarily due to not simulating

the absorbing structures, and the lack of interactions between

the sub- and main reflector of higher than third order.

To further validate the simulations, we apply the same

procedure for the range at 12.0GHz. The results are shown

in Figures 12-13, and show an even stronger correspondence.

However, the simulation time increases significantly, to 13

hours and with a peak memory consumption of 41 GB, on

the mentioned computing server. There are 3.5 million HO

unknowns on the sub reflector and 4.3 million HO unknowns
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Fig. 11. Comparison between GRASP MLFMM and measurement at
4.2GHz of the Airbus CCR 75/60, phase.
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Fig. 12. Comparison between GRASP MLFMM and measurement at
12.0GHz of the Airbus CCR 75/60, amplitude.

on the main reflector, corresponding to roughly 14 and 17

million RWG unknowns, respectively.

IV. CONCLUSION

In the present paper, we have described some recent devel-

opments in computational electromagnetics as implemented in

GRASP 10.4, and shown how they have significantly expanded

the range of solvable problems, even on modest computing

platforms. In particular, we have described how they can be

used to drastically reduce the simulation time required for

CATR designs, allowing parameter sweeps and even small-

scale optimization on CATRs that are too large to have been

analyzed, let alone optimized, just a few years ago. Finally,
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Fig. 13. Comparison between GRASP MLFMM and measurement at
12.0GHz of the Airbus CCR 75/60, phase.

we have validated the accuracy on a complicated and realistic

geometry, and shown that the simulations on a subset of the

actual geometry provide an accurate description of the field in

the quiet zone.
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