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INTRODUCTION 
 
A fast physical optics (PO) method is presented which in two steps calculates the scattered field of an optical 
component in a beam waveguide (BWG). The first step involves a calculation of a set of equivalent currents on an 
auxiliary plane and the second step a field calculation from this current set. 
 
The present work has been motivated by the major difficulties associated with accurate analysis of a complex BWG 
system at THz frequencies. One major difficulty is the use of components in the BWG that are large in wavelength. 
These components will make field calculation through the BWG using standard PO methods computationally time 
consuming. An immediate way to overcome this problem could be to apply ray-tracing techniques. However, for a 
complex BWG with many components, ray tracing is often inaccurate or impractical. Another way to overcome the 
problem could be to use Gauss-Laguerre beam expansion techniques. In many configurations [1] these techniques do 
provide fast and efficient ways to trace the beam. 
 
However, the demands for a compact BWG system design forces some components to have a small F/D (focal length to 
diameter ratio). Since the Gaussian beam method is only accurate for large F/D [2] and does not account for beam 
truncation Gaussian beam techniques are not always sufficient. 
 
The standard PO can be time consuming because of rapid phase variation of the currents in the integral. However, in a 
region where the beam is concentrated e.g., in the waist of a Gaussian beam or in the far field of a paraboloid, the PO 
integral is very fast to compute. Therefore, if an auxiliary plane is defined in a region where the beam is concentrated, 
the scattered field at any point in space can be found by employing two steps in the analysis: First, the field is calculated 
on the auxiliary plane and converted to equivalent currents on this plane. Secondly, the radiated field is calculated from 
the current distribution to an output plane or the next component. 
 
As will be shown in the examples the method has the ability to overcome the rapid growth of computation time with 
frequency. Normally, the computation time for PO will increase with the frequency to the 4th power, whereas the 
computation time for the present method is nearly independent of the frequency. The price to pay for this speed of 
computation is a limited accuracy of the field outside the main beam determined by the truncation of the field by the 
auxiliary plane. If the size of this plane is increased the accuracy outside the centre of the beam is improved, but the 
computation time is also increased. The method has the further advantage of being very simple to implement. It is thus 
much simpler than frame based expansion techniques as suggested in [3] and [4]. 
 
It should be emphasized that the method is only applicable for a well-focused beam. If the field to be computed does not 
have a well-defined phase front and waist, the present method is not able to reduce the computation time. 
 
ANALYSIS PROCEDURE 
 
The procedure is illustrated in Figure 1. A feed is illuminating a reflector producing an approximate Gaussian beam. In 
the figure the waist of the beam and an output plane is indicated. It is assumed that the field from the reflector should be 
calculated on this plane where e.g. a subsequent optical component could be located. The standard PO procedure would 
be to calculate the induced electric currents eJ  on the reflector using the PO approximation ie HnJ ×= ˆ2 , where  

is the surface normal and 

n̂

iH  is the incident magnetic field from the feed. Hereafter, the field on the output plane is 
calculated by numerical integration of the radiated field from the currents. This procedure is accurate and also efficient 
if the size of the reflector is less than app. 50λ. If the frequency ν is increased the number of current elements on the 
reflector must also be increased such that the spacing in wavelengths is the same. This shows that the required number 



of current elements is proportional to ν 2. Similarly, the number of points on the output plane will normally also be 
proportional to ν 2 for obtaining a sufficiently close spacing for plotting or for calculating the incident field on the next 
optical component. Since the field from each current element must be calculated in each of the output points it is seen 
that the computational work becomes proportional to ν 4. This frequency dependency is clearly inconvenient for 
analysis of large reflectors. 
 

Auxiliary plane
in waist 

Output plane 

 
  Figure 1. Offset ellipsoidal reflector with auxiliary plane and output plane after waist. 
 
The computation time can be made nearly independent of the frequency by introducing an auxiliary plane through the 
waist as shown in Figure 1. On this plane the field can be computed very fast, because the field from each of the current 
elements on the reflector will have nearly the same phase. This means that the integrand in the PO-integral will be 
nearly constant, and that it can be accurately computed using only a small number of current elements on the reflector. 
The incident field on the auxiliary plane can be converted to equivalent currents radiating the same field as the currents 
on the reflector in the half space to the right of the plane. From the equivalence principle it can be shown [5], that each 
of the following three sets of currents 
 
 EnJHnJ me ×−=×= ˆ        ,ˆ  (1) 

 HnJe ×= ˆ2  (2) 

 EnJm ×−= ˆ2 , (3) 
 
 
will radiate the correct field to the right of the auxiliary plane. Here E  and H  are the incident fields on the plane and 

 is the normal vector of the plane, pointing to the right. In (1) the equivalent currents consist of both electric and 
magnetic currents, whereas in (2) and (3) only one of the types are used. Each of the three sets of equivalent currents 
will exactly radiate the scattered field from the reflector on the right side of the plane. One the left hand side (1) will 
give a zero field, and (2) and (3) will give a field which is the mirror of the field on the right hand side. 

n̂

 
If the desired output plane is located to the left of the auxiliary plane as shown in Figure 2, the described procedure 
cannot immediately be used because the currents (1), (2) and (3), do not radiate the field from the reflector to the right 
of the auxiliary plane. This can, however, be remedied simply by using the advanced potential instead of the usual 
retarded potential in the radiation integrals. The electric vector potential eA  is a solution to the differential equation 
 
 ee JAk µ−=+∇ )( 22  , (4) 



where k=2π/λ is the wavenumber, µ is the permeability and eJ  is the electric currents on the auxiliary plane. The 
standard solution to (4) is given by 
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where the integration is performed over the currents on the auxiliary plane, ds’ is the surface element on the plane and 
'rrR −=  is the distance from the current element to the observation point r  on the output plane. The factor 

 is denoted the retarded potential because it relates the radiated field to the currents delayed by the time , 
(c = speed of light). Another solution to (4) is given by  
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where  is denoted the advanced potential because the field is in advance of the source. The usual radiation 
condition by which the field must be outwards propagating is not fulfilled by (6). Here the field converges towards the 
source and (6) is thus a non-physical solution to (4). For both potentials the corresponding electric and magnetic fields 
can be found from [5]  
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The radiation from the magnetic currents can be 
computed in a similar way by a retarded and an 
advanced potential. In the situation shown in 
Figure (2) the advanced potential is very useful 
because the currents (1), (2) and (3) will then 
radiate the incident field to the left of the auxiliary 
plane. This can be proved by considering a plane 
wave as the incident field on the auxiliary plane. 
From the known radiation by the currents (1)-(3) 
to the right of the auxiliary plane using the 
retarded potential, it is easy to show that the same 
currents with the advanced potential will radiate 
the incident plane wave to the left of the auxiliary 
plane. Since an arbitrary incident field can be 
expanded in a spectrum of plane waves, it is seen 
that the field to the left of the plane can be 
reproduced by the equivalent currents using the 
advanced potential. In this way the incident field 
can be reconstructed on output planes parallel to 
the auxiliary plane as long as the output plane does 
not intersect the reflector.     Figure 2. Output plane before waist. 
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OPTIMUM POSITION OF THE AUXILIARY PLANE 
 
It is interesting to know the optimum position of an auxiliary plane and in which cases it will reduce the computation 
time. To answer this question we consider the Gaussian beam in Figure 3. 
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  Fig. 3. Gaussian beam 
 
The two points, F1 and F2, are located the distance b from the beam axis. It can be shown that the surfaces of constant 
phase are ellipsoids, which in the cut of the figure are ellipses with focal points F1 and F2. The ellipsoids are obtained 
by rotating the figure around the z-axis. The orthogonal curves in the figure (hyperbolas with the same foci) represent 
surfaces of constant amplitude. If the reflector generating the Gaussian beam is located at zs as indicated in the figure, 
the reflector could be replaced by a set of currents with constant phase on the ellipsoid passing through the centre of the 
reflector. The radiation from these currents will add up in nearly constant phase on the output plane located at the centre 
of curvature of the ellipsoid. This plane is therefore the output plane on which the PO currents on the reflector can most 
easily be integrated. When the reflector is located at zs the curvature of the beam at the centre of the reflector becomes  
 
  (9) )/1( 22
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by the usual Gaussian beam formula [6]. The centre of curvature of the ellipsoid will thus be located at 
 
  (10) ss zbRz /2−=−
 
which is the optimum position of the output plane. The distance b is related to the waist size  by ow kbo /2=w . 
From consideration of the distances from points on an ellipsoid of equal phase to points on an output plane, it can be 
shown that the minimum number of PO current elements np on a reflector located at the ellipsoid can be estimated by 
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In this equation s is related to the position of the reflector by  and t is related to the position of the output 

plane  by . The constants α and β specify the sizes of the reflector and output plane, respectively, such that 

the field down to  will be covered by the reflector and down to exp(  for the output plane. It is seen 
that if the position of the output plane is chosen according to (10) we have  resulting in the minimum value 

 of (11). The PO integration procedure is based on the Gauss-Legendre integration rule and is described in detail 
in [7]. The computation time for calculating the field from the reflector in no points on the output plane becomes 
proportional to the number of connections to be made between points on the reflector and points on the output plane. 
For the direct PO integration this will give 
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If an auxiliary plane located at  is used the computation time will become proportional to  az
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where  is the position of the auxiliary plane. In a practical case the output plane could be a second reflector 
and if it is assumed that the necessary number of current elements on the second reflector is equal to the number of 
current elements on the first, it is seen that 
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In (15), a should be chosen to minimise . This value of a can be found analytically using (11). Some results 

(normalised by ) with the direct and the auxiliary plane method are shown in Figure 4 and 5. In Figure 4 the 
reflector is located at s=-5, and the output plane varies from z/b=-5 to 10. It is seen that the direct method is efficient if 
the output plane is close to the waist, whereas the auxiliary-plane procedure is efficient at some distance from the waist. 
In Figure 5 the reflector is (a plane mirror) located exactly at the waist t=0, and it is seen that the direct method is good 
far away from the waist, whereas the auxiliary-plane procedure is efficient close to the waist. In general it can be 
shown, that if one of the equations (14) and (15) gives a large number the other will give a small number, such that the 
PO calculations can be done efficiently for all positions of the output plane. 
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 Fig. 4. Direct vs. aux. plane for s=-5   Fig. 5. Direct vs. aux. plane for s=0 
 
OFFSET ELLIPSOIDAL REFLECTOR EXAMPLE 
 
An offset ellipsoidal reflector as shown in Figure 6 is used as an example to test the auxiliary-plane procedure. The 
angle of incidence on the reflector is 45° and the rim of the reflector is defined by the intersection of a cone with half 
opening angle 21° and apex in the focal point on the negative x-axis. The reflector is illuminated by a Gaussian beam 
and analysed at the two frequencies λ=0.9 mm and λ=0.09 mm. For both frequencies the electric field is polarised in 
the plane of symmetry and the taper on the reflector is approximately -60 dB. The reflector is an ellipsoid with one focal 
point at x=-63.5 mm and the other focal point at z=104 mm in the coordinate system shown in the figure. The reflected 
beam has its waist at z=88.8 mm and b=36.0 mm for λ=0.9 mm. For λ=0.09 mm the waist is located at z=103.8 mm 
with b=4.0 mm. 
In the following figures the radiated field from the reflector in the plane of symmetry is shown. The field at the waist is 
shown in Figures 7-8. The auxiliary plane is located at the waist and truncated at ±15 mm and ±2 mm for λ=0.9 mm 
and λ=0.09 mm, respectively. In Figures 9-10 the direct and auxiliary-plane methods are compared for λ=0.9 mm at the 



distances z=240 mm and z=40 mm. The distance z=40 mm is to the left of the 
waist so that the retarded potential must be used in the auxiliary-plane method. 
In Figures 11-12 the analysis is repeated for λ=0.09 mm. It is seen that the 
main beam is computed with good accuracy by the auxiliary-plane method 
down to approximately 80 dB below the beam maximum. A similar accuracy 
has been found for the field in the plane orthogonal to the plane of symmetry 
and for the cross polarisation. The accuracy can be improved by using a larger 
auxiliary plane (i.e. less truncation of the field in the waist), but this will also 
increase the computation time. If all the small diffraction ripples present in the 
direct analysis should be accurately calculated by the auxiliary-plane method, 
the plane should be considerably extended and there would be no saving of 
computation time compared to the direct method. In Table 1 and 2 the 
computational work is compared for the two methods with the No. of 
connections computed by (12) and (13). On an 800 MHz PC one connection 
can be computed in approximately 2µ sec. It is seen that the time saving is 
considerable for the new method and that the computation time is nearly 
independent of the frequency. The proposed method is thus especially 
attractive for output planes close to the reflector and for short wavelengths. 
 
If the beam from the reflector is focused in the far field, the optimum position 
of the auxiliary plane will be in the far field. In this case the far field computed 
in a suitable integration grid can be considered as an expansion of the near 
field in a spectrum of plane waves. Integration of this spectrum of plane waves 
on an output plane in the near field will give a similar reduction in computation 
time as in the example described above. This means that the auxiliary plane 
method can be used for mirrors with a paraboloid surface equally well. In 
beam waveguides mirrors as well as other optical components such as lenses, FSS filters and apertures are present. It is 
important to note that the auxiliary plane method is not only restricted to field propagation from mirrors but can also be 
used for field propagation through all the above-mentioned components. The analysis of such components will be 
addressed in future papers. 
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Figure 6 
Geometry and coordinate system 
of offset reflector.  
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Figure 7     Waist field by the direct method   Figure 8    Waist field by the direct method 
      λ=0.9 mm.          λ=0.09 mm. 
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Figure 9    Field at z=240 mm, λ=0.9 mm.                Figure 10   Field at z=240 mm, λ=0.09 mm. 
Full line: direct method. Dashed line: aux. plane.              Full line: direct method. Dashed line: aux. plane. 
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Figure 11   Field at z=40 mm, λ=0.9 mm.                Figure 12   Field at z=40 mm, λ=0.09 mm. 
Full line: direct method. Dashed line: aux. plane.              Full line: direct method. Dashed line: aux. plane. 

 
 
 

λ 
in mm 

z 
in mm 

Reflector points Connections for 
1000 output points 

in millions 
0.9 240 2832 2.83 
0.9 40 22798 22.80 

0.09 240 81051 81.05 
0.09 40 1115388 1115.39 

 
 Table 1 Number of current elements for direct integration. 
 
 

λ 
in mm 

z 
in mm 

 
Reflector points 

 
Aux. points 

Connections for 
1000 output points 

in millions 
0.9 240 1403 1403 3.37 
0.9 40 1403 1806 4.34 

0.09 240 1403 1403 3.37 
0.09 40 1403 1806 4.34 

 
 Table 2 Number of current elements for the auxiliary-plane procedure. 



CONCLUSION 
 
A procedure has been described for improving the speed of the classical Physical Optics method when applied to the 
analysis of beam waveguides. The procedure is very simple and involves the calculation of a set of equivalent currents 
on an auxiliary plane. It is expected that the procedure can be an alternative to the higher order Gaussian beam analysis 
often used for analysis of beam waveguides. 
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