
A HIGH-RESOLUTION ANTENNA DIAGNOSTICS TECHNIQUE FOR
SPHERICAL NEAR-FIELD ANTENNA MEASUREMENTS

C. Cappellin, J. M. Nielsen, O. Breinbjerg

Ørsted·DTU, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark

Abstract

A new antenna diagnostics technique for spherical near-field antenna measurements, that is able to
provide a high resolution of the reconstructed aperture field in excess of existing techniques, is presented.
This is realized by using a transformation from the spherical wave expansion (SWE), determined from
measurements, to the plane wave expansion (PWE), recovering in this way also part of the invisible region
of the plane wave spectrum. By inverse Fourier transform (IFT), the aperture field on a plane very close to
the antenna is determined with a resolution that exceeds the λ/2-limit, λ being the wavelength, provided
by the traditional IFT of the far-field.

1 Introduction
Antenna diagnostics is a technique for detecting errors and flaws, due to manufacture as well as operation,
in antennas from measurements of the radiated fields.
Planar near-field measurements or spherical near-field measurements are commonly used for this purpose,
both methods presenting limits in their practical and theoretical realization. In particular, when the recon-
struction of the aperture field is carried out through inverse Fourier transform of far-field data, either directly
measured or derived from near-field measurements, only a spatial resolution of λ/2 is achievable, since only
a limited part of the Fourier spectrum is obtainable from the far-field. Otherwise, the diagnostics can be real-
ized through a backward-transform of planar near-field data, with the disadvantage of introducing possible
errors in the invisible part of the plane wave spectrum [1]. Regarding spherical near-field measurements,
even though this technique is able to realize more accurate measurements in the entire angular range, the
achievable diagnostics is strongly limited by the radius of the minimum sphere that encloses the source, due
to the mathematical validity of the obtained SWE [2].
In this article a new technique is derived with the purpose of exceeding the limits of existing techniques.
The first step consists of obtaining the SWE coefficients from a spherical near-field measurement; second, by
using and extending an existing transformation between the SWE and the PWE, the spectrum in the visible,
as well as in the invisible region of the plane wave spectrum, is derived. The IFT is later applied to obtain
the aperture field on a plane close to the antenna. In this manuscript the theory behind the new technique
is presented and few simple test cases are provided. All theoretical results are expressed in the DTU-ESA
Spherical Near-Field Antenna Test Facility notation [3] in the S.I. rationalized system with an e−jωt time
dependence.

2 Theory

The SWE of the electric field ~E, generated by a current distribution and valid in the source-free region r > R,
is given by [3]
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tance is denoted by η, k is the wave number, and ~r = r sin θ cosφx̂ + r sin θ sinφŷ + r cos θẑ is the position
vector, with (r, θ, φ) being the usual spherical coordinates.
For the same field ~E, the PWE in the spectral (kx, ky) domain valid for z > zo, zo being the end of the source
region, is given by [4]
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where ~k = kxx̂ + kyŷ + kz ẑ is the wave propagation vector with kz =
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In the following it will be shown how (1) can be transformed into (2). For this purpose, we first consider the
SWE of the electric field derived by [5],
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with P̄
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n (cos θ) being the normalized associated Legendre function. It can be shown [6] that the two sets of

spherical vector wave functions are related as
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By comparing (1) and (4) it is thus seen that
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Figure 1: Countours of integra-
tion C±, for the α domain.
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The PWE of ~Eh
nm(~r ) and ~Ee

nm(~r ) in the spectral (α, β) domain, valid for
|z| > zo, can now be introduced [5]
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with ŝ = sinα cosβx̂ + sinα sinβŷ + cosαẑ, β ∈ [−π, π] and α ∈ C±, see Fig-
ure 1. By substituting (9) and (10) into (4), and by interchanging the order
of integration and summation, since the double integral is uniformly con-
vergent, the PWE of the field in the spectral (α, β) domain, valid for every
z > zo, can be found as
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where, by use of (8), the spectrum complex amplitude Ê(ŝ) is given by [6]
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The spectrum in the spectral (α, β) domain, Ê(ŝ)ejk cos αz, can now be translated to the (kx, ky) domain, to
obtain ~T (kx, ky)ejkzz , by using the relation [6]
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Having now obtained the PWE in the spectral (kx, ky) domain from the SWE (1), we can calculate the field
on every plane for constant z > zo arbitrarily close to the antenna using (2). The obtainable resolution
δx, δy is given by δx = π/kxmax and δy = π/kymax and can thus be achieved by selecting kxmax and kymax

appropriately in the SWE-to-PWE transformation.

3 Test Cases
A set of Hertzian dipole configurations has been investigated [6] to verify the procedure developed in Sec-
tion 2, since analytical expressions of the plane wave spectrum and the Q coefficients are available for this
simple antenna model. Comparisons are carried out between the spectra in the (kx, ky) domain derived
through (12), (13), (14) and (3), and between the fields calculated by (2), derived through (13), and the corre-
sponding analytical field expression. The investigated test cases are:

• Case 1: A z-oriented Hertzian dipole located at the origin
• Case 2: A combination of one z-oriented Hertzian dipole displaced along z axis at z = zo and a -z-

oriented displaced at z = −zo (to cancel the discontinuity of the spectrum in kz)
• Case 3: A x-oriented Hertzian dipole located at the origin
• Case 4: A combination of one x-oriented Hertzian dipole displaced along z axis at z = zo and a -x-

oriented displaced at z = −zo (to cancel the discontinuity of the spectrum in kz).

For Case 1 an analytical verification is possible and is now considered. According to [3], the SWE involves
only the term s = 2, m = 0, n = 1,
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with P being the dipole moment. The complex spectral amplitude Ê(ŝ) (12) in the spectral (α, β) domain
thus becomes
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By employing the substitutions (14) and (13) in (17), the PWE for every z > 0 is thus obtained
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which agrees with the reference result derived from considering the dipole current ~J(~r ) = Pδ(~r )ẑ in (3).

For Case 1, 2, 3 and 4 the upper limit N required for the truncation of the n-series in (12) has been analyzed.
It has been found that the criterium used in the DTU-ESA facility [3], N = [kro]+10, with ro being the radius
of the antenna minimum sphere, is not generally sufficient. Appropriate values have to be selected for every
dipole case, showing a clear dependence on the antenna model and being also related to the extent of the
(kx, ky) domain, i.e. the chosen values of kxmax and kymax.



For all dipole cases, the corresponding Q coefficients are analytically derived according to [3], obtaining
in general m = −1, 0, 1 and n = 1, 2, .., N . In all cases, the results, by varying zo from 0.1λ to 0.6λ, and
selecting z = zo + 0.3λ, are extremely satisfying in the spectra as well in the fields. The results for zo = 0.2λ,
N = [kro] + 14, at f = 2.5GHz for Case 4, the most complicated configuration, are shown in Figure 2, for
the spectrum x component in linear scale on a range of ±5k in the (kx, ky) domain, and for the electric field
x component in dB scale on a range of ±20λ in the (x, y) domain, with a resolution of δx = δy = 0.1λ.

(a) Absolute value of spectrum obtained from
(3).

(b) Absolute value of spectrum obtained from
procedure described in Section 2.

(c) Electric field amplitude from analytic field
expression.

(d) Electric field amplitude from procedure
described in Section 2.

Figure 2: Numerical results for Case 4: one x-oriented dipole displaced along z axis at zo = 0.2λ and a -x-oriented displaced
at −zo = −0.2λ: spectrum and field (x component) are evaluated on the plane z = 0.5λ.

4 Conclusions
A new antenna diagnostics technique for spherical near-field antenna measurements has been presented.
The new technique provides a high resolution in the reconstructed aperture field since the invisible region of
the plane wave spectrum is taken into account. Many investigations have still to be carried out, in particular
regarding the practical implications due to the denser sampling on the measurement sphere required by the
high value of N , the influence of noise on the measurements accuracy, and the possible applicability to more
general and real types of antennas.
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