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ABSTRACT 

A new diagnostics technique for spherical near-field 
antenna measurements, that can provide a high spatial 
resolution of the reconstructed aperture field, is 
presented. This technique is realized by transforming 
the spherical wave expansion (SWE) of the radiated 
field into the corresponding plane wave expansion 
(PWE), recovering a significant part of the invisible 
region of the plane wave spectrum. Through the inverse 
Fourier transform (IFT), the field on a plane outside as 
well as inside the antenna minimum sphere is 
reconstructed, with a resolution that exceeds the limit of 
one half a wavelength provided by the traditional IFT of 
the far-field. 

1. INTRODUCTION  

Antenna diagnostics is a technique to detect and identify 
electrical and mechanical errors in an antenna through 
an inspection of its radiated near-field. So far, several 
techniques, commonly based on far-field, planar or 
spherical near-field measurements, have been 
developed, all presenting limitations in their practical 
and theoretical realization [1]-[2]. We propose a new 
antenna diagnostics technique for spherical near-field 
measurements to be implemented at the DTU-ESA 
Spherical Near-Field Antenna Test Facility located at 
the Technical University of Denmark [3]. The 
measurements carried out in the DTU-ESA Facility are 
based on the spherical wave expansion (SWE) of the 
field radiated by the antenna. This field expansion is 
mathematically valid in any source-free region of space 
outside the so-called “minimum sphere” of the antenna, 
the smallest sphere, centred at the origin of the 
coordinate system, which completely encloses the 
antenna. By knowing the field on the measurement 
sphere, the field can be evaluated on a new and smaller 
sphere, larger than the minimum sphere. This is the 
limit of the most common diagnostics techniques used 
for spherical near-field measurements. We propose a 
way to exceed this limit. The idea is to derive from the 
SWE of the radiated field the plane wave spectrum of 
the same field. Once the plane wave spectrum on a 
given z plane outside or inside the minimum sphere is 
calculated, the plane wave expansion (PWE) of the field 

on that z plane is known. This allows the aperture field 
to be computed as the inverse Fourier transform (IFT) 
of the spectrum. By evaluating the plane wave spectrum 
also in part of the invisible region, the achieved spatial 
resolution on the z plane can exceed the traditional 
value of half a wavelength, provided by the traditional 
techniques. The first step consists of obtaining the SWE 
coefficients from a spherical near-field measurement; 
second, the plane wave spectrum in the visible, as well 
as in part of the invisible region, is calculated. The 
inverse Fourier transform is later applied to obtain the 
field on the desired z plane close to the antenna. In this 
manuscript the theory behind the new technique will be 
described and analytical calculations as well as 
numerical simulations will be shown. Investigations on 
the number of spherical modes necessary for the PWE 
convergence, and the corresponding sampling density 
on the measurement sphere, will be presented. The 
influence of truncations in the inverse Fourier transform 
will be finally studied. All theoretical results are 
expressed in the S.I. rationalized system with e-jωt time 
dependence. 

2. THEORY 

We start by introducing the SWE of the electric 
field E

r
radiated by a general antenna circumscribed by a 

minimum sphere of radius ro. In any source-free region 
r > ro the field can be expressed as a weighted sum of 
spherical waves [4],  
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where and are the expansion coefficients, that 
can be obtained from a spherical near-field 
measurement, and 
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normalized spherical vector wave functions. The 
medium intrinsic admittance is denoted by η, k is the 
wave number, and 
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 is the position vector expressed as 
a function of the traditional spherical coordinates (r, θ, 
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φ). In practice, the n-summation of the SWE is 
truncated at n = N, N being usually equal to N = kro+10. 
The PWE of the same electric field in the spectral (kx 
ky)-domain valid for z > zo, with zo being the largest z-
coordinate of the source region, is given by [5] 
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where kx, ky, kz  are the cartesian components of the 
wave propagation vector k

r
 with 222

yxz kkkk −−= .  
In practice, the kx, ky, integrals are truncated at a finite 
value and . The plane wave spectrum for 

a given z-coordinate is thus 

maxxk± maxyk±
zjk

yx
ze)k,k(T

r
, and it can 

be derived by the inverse of Eq. 2 or, in terms of the 
current source, by [5] 
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It will now be shown how the SWE of Eq. 1 can be 
transformed into the PWE of Eq. 2. For this purpose we 
introduce the PWE valid for z  > 0, in the spectral (α,β)-
domain of the spherical vector wave functions as given 
by [6]-[7] 
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with , β∈[-π, π] and 
α∈C

ẑαŷβαx̂βαŝ cossinsincossin ++=
+, see Fig. 1. 

 

 

 

 

 

                          

                  Fig. 1. Domain of the variable α with contour C+.           

The function )( βα ,Y m
n

r
 is the vector spherical harmonics 

defined by    
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with )(cosαP m
n being the normalized associated 

Legendre functions as defined by [4], 
ẑŷx̂ˆ αβαβαα sinsincoscoscos −+=  and 

ŷx̂ˆ βββ cossin +−= . By substituting the PWE of the 
vector spherical harmonics, Eq. 4 and Eq. 5, into the 
SWE, Eq. 1, and by interchanging the order of 
integration and summation, since the double integral is 
uniformly convergent [6], the PWE of the electric field 
in the spectral (α,β)-domain, valid for every z > ro, can 
be found as 

βαα
π

π

π

ddeŝÊjkrE rŝjk

C
∫ ∫
−

⋅

+

= sin)(
8

)( 2

rrr              (7) 

where the spectrum complex amplitude is given by  )ˆ(ˆ sE
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Eq. 8 can thus be calculated from the knowledge of the 
SWE coefficients  and .  )3(

1mnQ )3(
2mnQ

The spectrum in the spectral (α,β)-domain, , 
can now be translated into the (k

αcosjkzeŝÊ )(

x,ky)-domain to obtain 
zjk

yx
zekkT ),(

r
 by using the relation [7] 
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where (α,β) on the right hand side must be expressed as 
functions of the spectral variables kx and ky according to 
the relation k/kŝ

r
= . 

Having obtained the plane wave spectrum of Eq. 2 from 
the SWE of Eq. 1 on a given z plane, we can calculate 
the field on a new plane znew  being for example znew = z - 
∆L, with ∆L > 0, as depicted in Fig. 2, arriving at 
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The obtained spatial resolution of the field is given by 
maxyymaxxx k/,k/ πδπδ ==  and thus can be achieved by 

selecting kxmax and kymax appropriately in the SWE-to-
PWE transformation. 

We can therefore summarize the required steps of this 
antenna diagnostics technique as follows: 

1. Evaluate the Q coefficients through a spherical 
near-field measurement of the SWE of the 
radiated field of the antenna under test (AUT). 

2. Calculate the plane wave spectrum in the (kx,ky) 
domain on a given z plane, z > ro, according to 
the  SWE-to-PWE transformation, i.e. through 
Eqs. 8-9. 

3. Back-transform the spectrum to a new z plane 
close to the antenna z < ro . 

4. Compute the field on the desired z plane as the 
inverse Fourier transform of the spectrum 
through Eq. 2. 

 

Fig. 2. Back- transformation of PWE from a z plane 
outside the minimum sphere to a new z plane inside the 
minimum sphere. 

 

3. IMPLEMENTATION 

3.1 Practical considerations 

The new antenna diagnostics technique has been 
presented, but now some practical considerations have 
to be made. 

• The z plane for the computation of the spectra 
as well as the fields has to be selected 
sufficiently close to the AUT to realize an 
efficient diagnostics. 

• On that z plane, the extension of the           
spectral domain is chosen in order to ensure the 
desired spatial resolution of the aperture field, 
and to minimize the truncation error.  

  

• The infinite series in n in Eq. 8 can be 
truncated to a finite number N, chosen 
sufficiently large to ensure the desired 
accuracy of the spectrum. This value can be 
different from the traditional N = kro+10. 

• Given the required N, the sampling density on 
the measurement sphere is given by   

12
2
+

=∆=∆
N
πϕθ  

3.2 Test cases 
Now that the steps of the new diagnostics technique are 
clear, we can illustrate the procedure by considering a 
simple antenna configuration. A set of four x-oriented 
Hertzian dipoles on the x-y plane, equally displaced at 
the distance ro from the origin, are considered, see Fig. 
3. 

 
Fig. 3. Four x-oriented Hertzian dipoles on the x-y plane, the 
minimum sphere with radius ro and the constant z plane. 
 
The choice of this configuration is due to many factors. 
First of all, by locating the dipoles on the x-y plane, it is 
possible to investigate the effect of moving the z plane 
inside the minimum sphere. Second, for this antenna the 
Q coefficients can be calculated analytically avoiding 
the use of real measurements data, the use of which 
would have been premature at this point. Third, as it 
will be shown later, the radiated field contains 
arbitrarily high-order modes in n and m. Fourth, the 
analytical expression for the plane wave spectrum in the 
(kx,ky)-domain on the z plane, see Eq. 3, can be used as 
reference, since the dipole currents are known. In this 
way the truncation in the spectrum series of  Eq. 8 can 
be analyzed. Fifth, the analytical expression of the 
radiated field can easily be calculated and used as a 
reference for the result of the IFT of the spectra.  
Different value of ro have been studied, here we present 
the results for ro = 2λ, being ro the dipole position as 
well as the minimum sphere radius. Also, we will 
consider ∆L = 1λ, and thus the z planes z = ro+ ∆L=3λ 
and znew= ro- ∆L= 1λ. 
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For the calculation of the Q coefficients we refer to the 
results reported in [3; p.339] 
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In Eqs. 11-12, P denotes the dipole moment,   is 
the spherical Bessel function, while , 

)( on krj
4
µδ ,m 1  = ±µ ,  is 
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By use of Eqs. 8-9-11-12, we can therefore solve the 
first and second steps of the procedure. To compare the 
obtained results with some reference values, we use Eq. 
3  
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It is noted that a singularity for kz = 0 (kx
2+ ky

2 = 1) is 
present in the x- and y-component. It can be proved that 
such a singularity will always be present at least in one 
of the spectrum components and that the necessary, but 
not sufficient, condition to avoid this singularity is that 
the antenna far-field pattern has a null for 2/ . πθ =

3.2.1 Spectra computation 

We choose a (kx,ky) domain equal to [-3k : 3k] ×  [-3k : 
3k] and we sample it with 200 200 points. In Fig. 4  

are the reference spectral components of Eqs. 14-15-16 
and the one computed through Eqs. 8-9-11-12 with a 
truncation value of the n-series equal to N = kr

×

o+20. All 
quantities are in linear scale and the selected z plane is z 
= 3λ. It is seen that all components, also those affected 
by singularity in kz, are reconstructed, showing only a 
small difference in the amplitude of the order of 10-7, 
see Fig. 5. If we decrease N, the difference increases: 
for N = kro+10 it becomes of the order of 10-4.  

 

 

    

Fig. 4. Amplitude of the spectrum components on the plane z 
= 3λ: on the left the reference value of Eqs. 14-15-16, on the 
right the spectrum computed through the procedure for N = 
kro+20. 

 

Fig. 5. Amplitude difference of Tz-spectrumz on z = 3λ, on the 
left for N = kro+20, on the right for N = kro+10. 

For the same spectrum we compute also the phase: in 
Fig. 6 the result for the z component calculated with N = 
kro+20 is shown. As we see, the phase is not 
reconstructed outside the visible region, even if we 
increase the number of sampling points. This happens to 
the other components as well. Although the very low 
amplitude of the spectrum in the invisible region, see 

 



Fig. 4, means that an accurate reconstruction of the 
phase is not of high importance, we will briefly show 
how the phase reconstruction is influenced by the 
truncation number N. 

 
Fig. 6. Phase of the spectrum z component on z = 3λ: on the 
left the reference value of Eq. 16, on the right the spectrum 
computed through the procedure for N = kro+20. 

We therefore increase N until N = kro+50 and we 
compute again the phase, see Fig. 7: now the phase is 
reconstructed inside the region  and the 
corresponding difference in amplitude is equal to 10

k2±
-13.  

 

Fig. 7. Phase and amplitude of the spectrum z component on 
z = 3λ for N = kro+50. 

  

3.2.2 Fields computation  

Now that the spectra calculated through the new 
procedure have been investigated, we can inverse 
Fourier transform them to compute the field on a z- 
plane outside and inside the minimum sphere. All 
figures are in linear scale. 

a) Outside the minimum sphere on z = 3λ 
 The spectrum computed through Eqs. 8-9-11-12 is 
inverse Fourier transformed on the plane z = 3λ with the 
truncation value N = kro+10. The (kx,ky)-domain is 
decreased to the value of [-2k:2k], obtaining therefore a 
spatial resolution equal to 4/λ . Just the z component 
will be analyzed to avoid difficulties in the IFT of 
functions with singularities. The results are shown in 
Figs. 8-9. The IFT results are in good agreement with 
the analytical reference field expression showing the 
same level of difference. 

 

 
Fig. 8. Amplitude of the field z component on z = 3λ: on top 
the analytical value, on the left the IFT of the spectrum 
computed through the procedure for N = kro+10, on the right 
the IFT of the reference spectrum of Eq. 16. 
 

 
Fig. 9. Amplitude difference of the IFTs field z component, in 
respect of the analytical field on z = 3λ. 
 

By looking at Fig. 9 we anyway see a difference in the 
IFT results of some 4% with respect to the analytical 
field, which is not quite satisfactory. Since both IFTs 
show the same difference value, the inaccuracy is not 
due to a too small number N of n-modes in the spectrum 
representation. The problem is also not due to a 
truncation in the spectral domain, since, see Fig. 4, the 
spectrum outside the visible region goes smoothly to 
zero and is not truncated to a finite value. The 
inaccuracy could therefore be due to an insufficient 
number of points in the spectral domain. To analyze this 
factor, we investigate therefore the results for 300× 300 
and 100× 100 points, see the results in Fig. 10. The 
difference computed with 100× 100 points is almost 
four times higher than the one with 200× 200 points, 
while the one with 300× 300 is half of the difference 
given by 200× 200 points. 

 



 

 
Fig. 10. Amplitude difference of the IFTs field z component, 
in respect of the analytical field on z = 3λ, on top with 100 
sampling points, below with 300 sampling points. On the left 
the IFT of the spectrum computed through the procedure for N 
= kro+10, on the right the IFT of the reference spectrum of Eq. 
16.  
 

 We choose therefore 300× 300 as the number of 
sampling points in the (kx,ky)-domain and we now 
investigate the importance of the invisible region of the 
spectrum in the field reconstruction. In Figs. 11-12 are 
the inverse Fourier transforms of only the visible region 
of the spectra. Again the two IFTs look the same, but 
their differences with respect to the analytical value are 
almost twice the one in Fig. 10.  On this z plane the 
knowledge of the invisible spectrum, besides providing 
a higher spatial resolution, can improve the accuracy of 
the field computation.  

 
Fig. 11. Amplitude of the field z component on z = 3λ: on the 
left the IFT of the spectrum computed through the procedure 
for N = kro+10 (just visible region), on the right the IFT of the 
reference spectrum of Eq. 16 (just visible region). 

 

Fig. 12. Amplitude difference of the IFTs field z component 
(just visible region), in respect of the analytical field on z = 
3λ. 
 

b) Inside the minimum sphere on z = 1λ  
Now the spectrum is back-propagated to a z-plane inside 
the minimum sphere and then inverse Fourier 
transformed.  
The truncation value N = kro+10 is used and the results 
appear in Fig. 13. Inside the minimum sphere the 
considered number of modes is insufficient for a 
reconstruction of the field. The IFT of the spectrum 
calculated through the Q coefficients is totally different 
from both the reference analytical field and the IFT of 
the reference spectrum, while the IFT of the reference 
spectrum reconstructs the field with an even better 
accuracy than outside the minimum sphere, see Figs. 
10-14. 
 

 

 
Fig. 13. Amplitude of the field z component on z = 1λ: on top 
the analytical value, on the left the IFT of the spectrum 
computed through the procedure for N = kro+10, on the right 
the IFT of the reference spectrum of Eq. 16. 
 

 
Fig. 14. Amplitude difference of the IFT of the reference 
spectrum of Eq. 16 in respect of the analytical field on z = 1λ. 
 
To discriminate the source of error shown in Fig. 13 we 
inverse Fourier transform just the visible part of the 
spectrum obtained with N = kro+10. As we can see 
from Fig. 15, the result is now completely different 
meaning that the problem lies in the reconstruction of 
the invisible part of the plane wave spectrum. We 
compute therefore the spectrum at  z = 1λ, see Figs. 16-
17. The spectrum computed with N = kro+10 is totally 

 



different from the reference spectrum, while by 
increasing N to the value N = kro+50, the spectrum is 
reconstructed with an accuracy of the order of 10-7. 

 
Fig. 15. Amplitude of the field z component on z = 1λ. On the 
left the IFT of the spectrum computed for N = kro+10, (just 
visible region), on the right its difference with the analytical  
value.   
 

 
Fig. 16. Amplitude of the spectrum z component on the plane z 
=1λ: on the left the reference value of Eq. 16, on the right the 
spectrum computed through the procedure for N = kro+10. 
 

 
Fig. 17. Amplitude of the spectrum z component on the plane z 
=1λ: on the left the spectrum computed through the procedure 
for N = kro+50, on the right the difference with the reference 
value of Eq. 16. 

 
We therefore use N = kro+50 and we calculate again the 
IFT, see Fig. 18. Now the difference is almost equal to 
the one given by the IFT of the reference spectrum in 
Fig. 14. This shows that an accurate spectrum and 
aperture field can be obtained inside the minimum 
sphere if the correct truncation number in the n-series of 
Eq. 8 is considered. 
  

 

Fig. 18. Amplitude of the field z component on z = 1λ. On the 
left the amplitude of the IFT of the spectrum computed for N 
= kro+50, on the right its difference with the analytical value. 
 
To complete our investigations, we show in Fig. 19 an 
example of aperture field reconstruction very close to 
the antenna, on the plane z = 0.2λ. The spectrum is 
computed with the truncation value N = kro+50 giving a 
difference in amplitude of almost 10%. This high value 
is due to an accuracy of the order of only 10-3 in the 
spectra reconstruction. The accuracy of the field can of 
course be decreased by increasing the value of N. 
 

 

 
Fig. 19. Amplitude of the field z component on z = 0.2λ: on 
top the analytical value, on the left the IFT of the spectrum 
computed through the procedure for N = kro+50, on the right 
the difference with the analytical value. 
 
 

4. CONCLUSIONS 
A new diagnostics technique for spherical near-field 
antenna measurements, that can provide a high spatial 
resolution of the reconstructed aperture field, has been 
presented. 
The plane wave spectrum is reconstructed in the visible 
as well as in part of the invisible region of the spectral 
domain. The achieved accuracy, on a z-plane outside 
and inside the antenna minimum sphere, is high being in 
excellent agreement with the analytical reference 
values. It has been shown that the n-series involved in 
the spectra expressions can be truncated to a finite 
number N.  
Regarding the aperture field, the spatial resolution 
obtained here reaches the value of 4/λ . It has been 
proved that an insufficient truncation value N in the 
spectrum can have different influences on the field 
computations. In particular, no errors are recovered 
when a spectrum with a low value of N is inverse 
Fourier transformed on a plane outside the minimum 
sphere. But when the field is computed inside the 
sphere, only a much higher value for N can reconstruct 
the field with good accuracy. The importance of the 

 



knowledge of the invisible region of the spectrum in the 
field reconstruction has also been demonstrated. 
Many investigations remain to be carried out in the 
future. In particular, for a given antenna of a certain 
size, a given z plane, a required accuracy and resolution, 
it is needed to establish a relation to determine the 
optimum N for the series of Eq. 8. Also, the IFT of 
spectra with a singularity will be optimized and more 
realistic antenna models will be investigated. 

REFERENCES  

1. Kaplan L., Hanfling J. D., Borgiotti G. V., The 
Backward Transform of the Near-Field for 
Reconstruction of Aperture Field, IEEE Trans. on 
Antennas and Propagation Soc. Symp. Dig., 764-767, 
1979. 

2. Joy E. B., Guler M. G., High Resolution Spherical 
Microwave Holography, IEEE Trans. on Antennas and 
Propagation, vol. 43, 464-472, 1995. 

3. Homepage of the DTU-ESA Facility: 
http://www.emi.dtu.dk/research/afg/snf/SNF.html. 

4. Hansen J. E., Spherical Near-Field Antenna 
Measurements, Peter Peregrinus Ltd. London 1988. 

5. Hansen T. B., Yaghjian A. D., Plane Wave Theory of 
Time-Domain Fields, Near-Field Scanning 
Applications, IEEE PRESS, 1999. 

6. Devaney A. J., Wolf E., Multipole Expansion and 
Plane Wave Representations of the Electromagnetic 
Field, Journal of Math. and Physics, Vol. 15, 234-244, 
February 1974. 

7. Cappellin C., Antenna Diagnostics in Spherical Near-
Field Antenna Measurements by Plane Wave 
Expansion, M. Sc. Thesis, Ørsted.DTU, 
Electromagnetic Systems, Technical University of 
Denmark, April 2004. 

 

 


	INTRODUCTION
	THEORY
	IMPLEMENTATION
	Practical considerations
	Test cases

	CONCLUSIONS

