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ABSTRACT

A higher-order inverse method of moments algorithm,
employing smooth current and geometry representations,
as well as a very noise-robust solution algorithm, was pre-
sented at last year’s ESA workshop. The fundamental
properties of the algorithm, including quantitative results
for the RMS error of the reconstructed surface currents,
were illustrated using synthetic data with added noise.
In this paper we investigate the properties of an iterative
variant of the algorithm and show practical results from
applying the higher-order algorithm to measured fields
obtained in a spherical near field range. The presented
examples are chosen to illustrate both antenna diagnos-
tics and filtering applications.
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1. INTRODUCTION

The inverse method of moments (INV-MoM) has been
investigated by several research groups as a promising
technique for reconstruction of extreme near fields and
surface currents on arbitrary 3D surface surfaces enclos-
ing the antenna from measured fields [1]-[14]. The appli-
cation areas of INV-MoM include classical antenna di-
agnostics – where electrical or mechanical errors can be
identified by inspection of the reconstructed near field or
surface current– as well as filtering – where, for instance,
currents on parts of the enclosing surface are artificially
removed or radiation patterns of noisy, truncated, or ir-
regular measurements are enhanced.

A higher-order version of the INV-MoM employing
smooth current and geometry representations, as well as a
very noise-robust solution algorithm based on Tiknonov
regularization in generalized form, was presented at last
year’s ESA workshop [14]. In this paper we present an
iterative variant of our regularization algorithm and sub-
sequently apply the higher-order INV-MoM to measured
fields obtained in the DTU-ESA spherical near-field test
facility [15]. The first example illustrates the antenna di-

agnostics application and involves processing of the ra-
diation pattern of a radiating element on a large satellite.
It is shown that even small errors with only minor effect
on the radiation pattern, e.g., a few dBs 30 dB below the
peak level, can be clearly detected in the reconstructed
surface currents. The second example, illustrating the fil-
tering capabilities, deals with measurements performed
on a corrugated horn antenna. A comparison with an
analytical horn model shows that the INV-MoM can be
used to reconstruct a noise-free radiation pattern recover-
ing fine pattern details that were lost due to noise. Hence,
in this application the INV-MoM acts as a physics-based
filter providing enhanced measurement accuracy.

2. SUMMARY OF HIGHER-ORDER INVERSE
METHOD OF MOMENTS

The higher-order INV-MoM is aimed at computing tan-
gential electric and magnetic fields on the reconstruction
surface S enclosing an antenna, based on fields measured
at discrete points outside the surface. On the reconstruc-
tion surface, the equivalent electric and magnetic surface
current densities are defined as

JS = n̂×H (1a)
MS = −n̂×E, (1b)

where E and H are the fields just outside the surface of
reconstruction. These equivalent currents are those corre-
sponding to Love’s equivalence principle since they pro-
duce zero field inside S. They also correspond to the tan-
gential physical fields one would actually measure on S.

The measured field can now be written as

E
meas(r) = −η0LJS +KMS (2)

where η0 is the free-space impedance and the integral op-
erators L and K are defined as

LJS = jωµ0
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where k0 is the free-space wavenumber and G(r, r�) is
the scalar Green’s function of free space. Equation (2) is
referred to as the data equation, since it relates the mea-
sured data E

meas and the unknown surface current den-
sities JS and MS .

Love’s equivalent currents in (1) constitute just one set of
possible equivalent currents that radiate exactly the field
E

meas outside the reconstruction surface. Due to this am-
biguity the desired physical current densities in (1) can
only be obtained if additional a priori information is im-
posed. The desired currents in (1) are obtained by en-
forcing the a priori information that the fields radiated by
(JS ,MS) inside S must be zero [2], [13]. This leads to
the equations
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for r ∈ S. These expressions are referred to as the bound-
ary condition equation.

A discrete version of the equations above is obtained
by employing standard MoM techniques. Most authors
employ RWG basis functions on flat triangular patches
whereas a higher-order version using smooth polynomial
basis functions on curved curvilinear patches were intro-
duced in [14]. The data equation and the boundary con-
dition equation leads to two coupled matrix equations

Āx = b, (5)

L̄x = 0, (6)

where x is a vector of unknown basis function coeffi-
cients, b contains samples of the measured field, Ā is
an M × N matrix with elements representing the field
radiated by a particular basis function, and L̄ is a P ×N

matrix, whose elements represent the field radiated by a
particular basis function, weighted by a particular testing
function on the surface of reconstruction.

The coupled matrix equations above must be solved for
the unknown current vector x. However, the elements
of b are inherently affected by measurement noise which
may deteriorate the solution unless regularisation is em-
ployed. A common approach to this problem is to take
advantage of the inherently regularising property of a
Krylov-subspace solver and apply it to the equation
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This solution method combined with a RWG discretiza-
tion scheme has been used in the vast majority of pre-
viously published works, either in the simplest possible
version with L̄ = 0 in [3, 4, 5, 6, 8, 9, 10, 11], or more
recently with a non-zero L̄ in [12, 13]. Smooth polyno-
mial basis functions are required for improved accuracy
but they at the same time need a more advanced solution

scheme. The scheme introduced in [14] solves this prob-
lem by employing the matrix L̄ as a regularising term
with a problem-dependent weight. In the present paper
we employ an iterative variant of the advanced solution
scheme in combination with higher-order basis functions.
Results obtained with first-order basis functions and a
simple iterative solution of (7) are presented for compar-
ison.

3. NUMERICAL RESULTS FOR RMS ERROR
AND ITERATION COUNT

The performance of the iterative variant of the higher-
order method [14] has been investigated by considering
analytical data with added noise. The use of analytical
data allows the reconstructed currents to be compared to
the exact solution and the relative RMS error can be com-
puted. The test case is the same as ”Case 1” in [14], i.e.,
5 dipoles with arbitrary orientation inside a spherical re-
construction surface. The equivalent surface currents on
the surface of reconstruction were obtained with two dif-
ferent algorithms:

1. First-order basis functions (roof-tops) in combina-
tion with a simple iterative solution of (7). The num-
ber of unknowns is N = 2400 and the number of
patches is 600.

2. Higher-order basis in combination with an iterative
variant of the solution scheme presented in [14]. The
number of unknowns is N = 864 and the number of
patches is 24.

For both algorithms the sphere is meshed using 4th-order
curvilinear patches which provide an accurate geometri-
cal model of the curved surface. The memory required to
store the matrices Ā and L̄ scales as O(N2) and the first-
order algorithm therefore requires about ten times more
memory than the higher-order version.

The relative RMS error versus the number of iterations
performed by the Krylov subspace solver is shown in
Figure 1. For noise-free data the first-order algorithm
reaches an RMS error of about 20 percent after a few
iterations but further improvements require a substan-
tial number of iterations. The higher-order algorithm
achieves a much lower RMS error and the error decays
rapidly as the iteration count increases. This confirms the
observation of [14]: Without noise the higher-order algo-
rithm can reconstruct the field essentially without loss of
information.

The results when noise is added are presented in the
lower part of Figure 1. The first-order algorithm essen-
tially provides the same accuracy as in the noise-less case
whereas the higher-order algorithm diverges for large it-
eration counts. Therefore, it becomes crucial to stop the
iterative algorithm when the optimal solution is obtained
(see [14]). For the case considered here, the RMS error
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Figure 1. Relative RMS error versus iteration count. The higher-order method (light blue curve) corresponds to N = 864
polynomial basis functions. The first-order method (dark blue curve) corresponds to N = 2400 roof-top basis functions.
Top left: Synthetic data with no added noise. Bottom left: Synthetic data with SNR=60 dB. Bottom right: Synthetic data
with SNR=40 dB.



obtained with the higher-order algorithm is an order of
magnitude lower than that obtained with the first-order
version. In addition, it is noted that the higher-order al-
gorithm uses an order of magnitude less memory.

4. APPLICATION EXAMPLES

The higher-order INV-MoM is now used to reconstruct
the extreme near field for two practical cases: Three cir-
cular patch antenna elements in a large radiometer con-
figuration and a corrugated horn antenna.

4.1. Radiometer antenna elements

The first test case considers three out of 69 circular patch
antenna elements in the MIRAS instrument on ESA’s
SMOS satellite (see Figure 2). The radiation pattern of
each antenna unit was measured at the DTU-ESA spher-
ical near field test facility [15]. During this measurement
campaign, two antenna units (BC03 and A01) were found
to produce a higher cross-polar field than expected. Fig-
ure 3 shows the pattern of a correctly working unit (A01),
a unit producing a 10 dB higher cross-polar compo-
nent (BC03), and a unit producing a frequency-dependent
cross-polar level (A05). These measured fields were used
as input to the INV-MoM algorithm and the surface of
reconstruction was chosen to be a small box enclosing
the element. The reconstructed cross-polar field compo-
nents on the top surface of the thermal insulation foil
(z = −5 mm) are shown in Figure 4. The correctly
working unit A01 (left column) produced a frequency-
independent symmetric cross-polar field component with
a relatively low amplitude. Unit BC03 (centre column)
produced a much higher cross-polar level and only two
lobes instead of four. Unit A05 (right column) produced
a cross-polar field that increases slightly with frequency
and becomes more asymmetric at the highest frequency.
This shows that even small errors in the cross-polar fields
can be detected by the higher-order INV-MoM.

4.2. Corrugated horn antenna

The corrugated horn antenna considered here is shown
in Figure 5. The antenna is mounted on a metal frame
which is covered by absorbers and the radiation pattern
was measured in the DTU-ESA spherical near field test
facility [15]. The radiation pattern at 10 GHz is shown
in Figure 6 where an unexpected high on-axis cross-polar
field component can be observed. The near field is then
reconstructed on a circular cylinder as shown in Figure 7.
The front face of the cylinder is located at the horn aper-
ture at z = 0 and the radius of the cylinder corresponds
to the actual horn radius (58.2 mm). The cross-polar field
component radiated by the reconstructed currents is also
evaluated in front of the aperture at z = λ/4 (see Figure
8) revealing a more clear picture of the reconstructed near

Figure 2. Configuration of the MIRAS instrument on
ESA’s SMOS satellite. The three antenna elements in-
vestigated here are marked with red arrows.

field. It is observed that the cross-polar field in front of
the aperture looks distorted and lacks the expected sym-
metry.

The far field radiated by the reconstructed currents is also
shown in Figure 6 along with the field obtained by trun-
cating the measured SWE at the noise floor. At field lev-
els below -40 dB, the field obtained by truncating the
SWE looks like a low-pass filtered version of the noisy
measured pattern. However, it is observed that the recon-
structed far field does not agree with the truncated SWE
field. The INV-MoM includes a priori information about
the size and shape of the antenna, and one can therefore
hope that the reconstructed pattern is more accurate than
both the noisy measured pattern and the one obtained by
truncating the SWE. It is obviously only possible to de-
termine the most accurate pattern if the exact pattern is
known and this was explored by using synthetic measured
data. The radiation pattern of a corrugated horn, similar
to the horn considered above, was evaluated by an accu-
rate horn modeling tool and random noise was added in
order to obtain a SWE with the same noise floor as the
one obtained by the real measurements. The INV-MoM
was then invoked with the noisy far field data as input.
The surface of reconstruction was conformal to the ge-
ometrical model used in the horn modeling tool. Figure
9 shows the reference pattern obtained by the horn mod-
eling tool, the noisy synthetic measurements, the recon-
structed pattern obtained with INV-MoM, and the pattern
obtained by truncating the SWE at the noise floor. The
scale on the figure is relative to the co-pol peak at θ = 0
and a random cut at φ = 46◦ has been selected. It is
seen that the reconstructed pattern (dashed blue curve)
captures very fine details of the reference pattern (black
circles) whereas the truncated SWE pattern is simply a
low-pass filtered version of the noisy measured pattern.
This result leads to the conclusion that the INV-MoM
can be used to improve the measurement accuracy and
reconstruct details of the measured pattern which are not



Figure 3. Radiation patterns of the three selected MIRAS antenna units. Each plot contains three frequencies. Unit A01
(left) is working correctly, unit BC03 (centre) produces a high cross-polar field component, and unit A05 (right) produces
a slightly increased cross-polar field level that deteriorates with increasing frequency.

Figure 4. Reconstructed cross-polar field (Ey) at z = −5 mm. From top to bottom the rows correspond to 1.404 GHz,
1.413 GHz, and 1.423 GHz. Left column: Correctly working unit A01. Centre column: Unit BC03 with high cross-polar
field for all frequencies. Right column: Unit A05 with increasing cross-polar field levels for increasing frequency.



Figure 5. Measurement setup for the corrugated horn.

Figure 6. Measured (solid red curve) and reconstructed
(dashed blue curve) radiation patterns of the corrugated
horn. The pattern obtained by truncating the SWE at the
noise floor (n=13) is also shown (solid green curve). The
curve with a peak of −35 dB represents the cross-polar
component.

Figure 7. Reconstructed x- and y-components of the elec-
tric field in dB-scale shown directly on the surface of re-
construction.

Figure 8. Cross-polar component of the reconstructed
field at the z = λ/4 plane. The scale is normalised such
that 0 dB corresponds to the level of the co-polar peak in
the z = λ/4 plane.

directly available due to the inherent measurement noise.
This is accomplished by utilizing the information about
the location, size, and shape of the antenna. Figure 10
shows the spectrum of the SWE coefficients for the ref-
erence field, the synthetic measured field, and the recon-
structed field. It is observed that the INV-MoM is able to
recover a part of the spectrum that was not readily avail-
able due to noise.

Figure 9. Reference pattern (black dots), the syntheti-
cally measured data with added noise (solid red curve),
the reconstructed pattern (dashed blue curve), and the
truncated SWE pattern (solid green curve).

Figure 10. Power content of the SWE coefficients for the
reference pattern (black dots), the synthetically measured
data with added noise (solid red curve), and the recon-
structed pattern (dashed blue curve).



5. CONCLUSIONS

This paper described an iterative variant of the higher-
order Inverse Method of Moments technique for recon-
struction of the extreme near field of an antenna. It was
shown for analytical data with added noise that the ac-
curacy of the higher-order algorithm is approximately an
order of magnitude better than the first-order algorithm
presented previously. The algorithm was applied to a
practical antenna diagnostics problem where the recon-
structed near field revealed anomalies of the antenna un-
der test. Furthermore, an example was presented where
the INV-MoM technique was used to enhance the mea-
surement accuracy and reconstruct details of a measured
pattern which were not directly available due to noise.
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