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ABSTRACT 

In-flight measurements of satellite antenna patterns are 

often given in a highly irregular grid and the data may 

be influenced by severe noise such that an accurate pat-

tern determination is difficult. In this paper, a two-step 

fitting algorithm for retrieval of the antenna pattern 

will be demonstrated. 

As the number of available measurements is large, the 

data are first filtered by an averaging over small re-

gions. This reduces the amount of data as well as the 

noise in the data with a minimum loss of pattern infor-

mation. In the second step, the pattern is fitted by 

means of the Kriging method [1], limiting the angular 

field variation to D/λ, the size of the antenna, D, in 

terms of wavelengths, λ. This procedure reduces the 

noise level significantly. 

As a result this algorithm provides a much more accu-

rate and smoother pattern, reasonable error estimates 

and runtimes several orders of magnitude faster than 

the previous algorithms. 

Simulations are presented for the 353 GHz beam of the 

Planck Space Telescope for which periodic mirror dis-

tortions generate grating lobes in the side-lobe region, 

grating lobes which seem imperceptible in the noise of 

the measurements. 

Keywords: In-Flight Testing, Pattern Reconstruction, 

Kriging, mm-Wave, Satellite, Grating lobes 

1.  INTRODUCTION 

Testing of a satellite borne antenna after launch is desirable 

in many cases. For the Planck Space Telescope the operat-

ing temperature of the reflector antenna is 40K and satisfac-

tory testing on the ground could not be achieved as ex-

tremely accurate knowledge of the antenna pattern is crucial 

for the scientific results. 

The Planck satellite [2] is a spinning satellite with a double 

reflector which scans the celestial sphere for weak signals 

from the Big Bang and focuses these on the focal plane with 

47 detectors operating from 30 to 857 GHz, cf. Figure 1. 

 

Figure 1 – The Planck double reflector antenna system 

with two ellipsoidal mirrors (aplanatic configuration).  

From the antenna pattern obtained by the in-flight testing it 

is possible to deduce information about the antenna such as 

possible defects of the reflector surface which may then be 

used to predict a better pattern. A method based on this 

technique and further combining data from detectors at dif-

ferent frequency bands has previously been presented [3]. 

Further details regarding the spinning antenna may also be 

found here. 

In the present paper we will describe a new powerful tech-

nique – based on a Kriging algorithm – for reconstructing 

the pattern measured by in-flight testing of the Planck an-

tenna system. In the in-flight testing Mars and Jupiter are 

scanned as reference sources but noise generated by the 

sampled planet and by the temperature of the detector 

(though down to 0.1K) hampers the measurements, espe-

cially in the sidelobe regions, where grating lobes might be 

present. In the new reconstruction technique described here 

the influence of the noise is reduced considerably and the 

possibility of detecting the grating lobes is improved. 

The simulated measurements and the method are shortly 

presented in Sections 2 and 3 and a more detailed descrip-
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tion of the algorithm is presented in Section 4. The results 

are presented in Section 5 and the conclusions are found in 

Section 6. 

2.  SIMULATED MEASUREMENTS 

For the Planck Telescope, the in-flight measurements are 

characterized by a large number of measurements in an ir-

regular pattern as a consequence of the scanning performed 

by the rotating satellite. Furthermore, the signals are meas-

ured several times in nearly the same directions. On the 

other hand, the measurements contain intrinsic noise, dis-

rupting the antenna pattern. The 353 GHz HFI detector will 

be used as example in this presentation.  

As the disclosure of in-flight measured data is contractually 

not allowed, all presented results are based on simulations 

of realistic data. 

An example of the directions of measurements of Jupiter 

covering the main beam area for the 353 GHz HFI detector 

is shown in Figure 2. The in total 107119 directions are 

found distributed in ‘lines’ along the scan direction.  

 

Figure 2 - Measurements directions, each given as a dot, 

around the main beam of a 353 GHz detector. Note the distri-

bution in lines along the scan direction v. 

The possible grating lobes in this pattern region are gener-

ated by the hexagonal honeycomb support layout of the 

mirrors giving core print-through errors in a quilting pat-

tern. These deformations are clearly detected in Figure 3 

where the on-ground measurement of the sub-reflector sur-

face is visualized [4]. 

 

Figure 3 – Measured deformations of the sub-reflector 

surface at 50 K. 

The periodic bulges or dimples in the centre of the hexago-

nal cells create grating lobes in a hexagonal pattern around 

the main beam [5]. The surface distortion has been simulat-

ed in GRASP [6] and with a peak level of 10 µm the grating 

lobes at 353 GHZ are calculated to have a peak level 38 dB 

below the main beam peak, Figure 4. 

 

Figure 4 - Calculated grating lobes of HFI-353-1 for 10 µm 

dimpling 



3.  METHOD 

The goal is from the measurements to find a model for the 

true antenna pattern. As the measurements are noisy, the 

model shall not follow the measurements strictly, but pre-

sent a pattern description in which the noise is smoothed 

out while minor, but realistic, field variations such as grat-

ing lobes are reconstructed. 

To reduce the noise, and achieve a model in a regular grid, 

a two-stage fitting algorithm has been developed, exploiting 

the spatial dependency of the measurements. The first stage 

consists of a rather crude filter, the purpose of which is to 

reduce the noise as well as the amount of data. The second 

stage is the Kriging fitting model. This stage is inspired by 

the implementation in the Matlab Kriging toolbox DACE 

[7], modified to employ fitting and implemented in 

FORTRAN with focus on memory efficiency and stability. 

4.  ALGORITHM 

Mathematically, we are given m measurements of field val-

ues z in directions (u,v), where  

u = sin cos 

v = sin sin 

with  and  being usual spherical coordinates and  = 0, 

corresponding to (u,v) = (0,0), is close to the direction of 

the beam. 

The samples are noisy and irregularly distributed, but have 

a spatial dependency, such that the closer two measure-

ments are in the uv-plane, the greater the correlation be-

tween their field values. 

With the datasets we are considering, the number of meas-

urements m is far too large to employ the Kriging algorithm 

directly as the chief computational costs of computing the 

Kriging model is the Cholesky factorization of a m×m ma-

trix for which the number of operations scales as O(m
3
). For 

the 353 GHz dataset, m = 107119, and thus a data reduction 

is needed. Furthermore, experiments have shown that 

Kriging fitting performs poorly on datasets affected by seri-

ous noise, particularly for low-dimensional data. Therefore, 

a crude spatial filter is initially employed.  

4.1  Filter 

The purpose of the filter is to reduce the noise as well as the 

amount of data. This may be done by an averaging as it may 

be assumed that the noise is symmetrically distributed with 

an average of zero. 

The directions (u,v) of the measurements is divided into a 

grid and the output of the filter is the average of the meas-

urements within each cell of this grid. When the cells are 

large each cell will keep a large amount of data and the av-

eraging will give a good noise reduction. On the other hand, 

field variations within a cell cannot be represented and the 

cells shall not be too large. 

The Nyquist criterion states that all field variations will be 

measured when the sampling is carried out with a spacing 

which does not exceed /D,  being the wavelength and D 

the diameter of the radiating aperture. This is the theoretical 

maximum sample spacing. For a good interpolation of the 

field the sample spacing shall be at least four times smaller, 

i.e. 0.25/D. However, the request for fine pattern details 

suggests an even denser spacing of the data points such as 

0.1/D. In the present case the 107119 samples cover a 

total region which in u and v is about 20/D. Averaging the 

data within cells being 0.1/D in both u and v then results in 

40000 cells, which is too large for the Kriging algorithm. 

Therefore, the data set is reduced to the region surrounding 

one grating lobe only giving a region of 5/D and 2500. An 

example of the filtering is illustrated in Figure 5. 

 

Figure 5 - A mini-example of the filter. The blue lines 

represent four cells of the grid, separated by 0.1/D. 

The red crosses are the measurements, and the green 

dots are the result of the filter - representing the aver-

age of the samples inside each cell. 

 

4.2  Kriging 

The method of Kriging exploits a supposed spatial depend-

ency in a set of samples to impose additional requirements 

on the fit. In its simplest form, it basically involves the fit-

ting of a correlation model to a sample set - it was in this 

form Danie Krige [1] introduced it. Later work by several 



people, most notably G. Matheron [8], formalized it further 

and introduced several variations of the model, including 

the Universal Kriging model applied here. Its use in model-

ling deterministic behaviour was introduced by the land-

mark paper [9], allowing widespread use of the method 

which was previously restricted to the geostatistical com-

munity. Theoretically, the key strength of the Kriging pre-

dictor is that amongst all linear and unbiased estimators, it 

minimizes the expected error [10, p. 60]. In practice, it has 

several other advantages which have prompted its use in the 

present scenario – most notably, it yields a smooth model 

and requires no special considerations when faced with ir-

regularly distributed data. Also, its use of a global regres-

sion model and a local correlation model allows for surpris-

ingly good accuracy when applied correctly. 

4.2.1  Model 

Given is a set of m measured field values 
iz  in directions 

 , ,  1, ,i iu v i m  . The process is started by normalizing 

the data by subtracting the average value and dividing by 

the standard deviation for each of the variables u , v  and  

z . In this way they each have an average of zero and a 

standard deviation of one whereby better numerical and 

statistical properties are obtained [3,8]. 

Mathematically, we arrange the normalized field values in a 

vector  1 2, , ,
T

mz z z z  and the normalized measurement 

directions similarly in  1 2, , ,
T

m X x x x  where the i’th 

row 
ix  describes the direction  ,i iu v . 

Inspired by [7], a model is adopted that expresses the field 

z(u,v) by a sum of a regression model F and a correlation 

model S such that the field model is given by 

( , ) ( , ) ( , , , )u vz u v F u v S u v    (4.1) 

Here, the regression model, F(u,v), shall be restricted to a 

polynomial
1
 in u and v. The number n of coefficients, 

,    1  ,2, ,j j n   , needed for describing the polynomial de-

pends on the order of the polynomial. In our case we found 

that the use of second order polynomials provided the best 

results, yielding n = 6: 

  2 2

1 2 3 4 5 6,F u v u v u v uv            

  (4.2) 

The polynomial term with coefficient j  is denoted 

 ,jf u v  (i.e.    1 6, 1, , ,f u v f u v uv   ) and Eq. (4.2) 

may in general be expressed as 

                                                           
1
 In general, other linear expressions may be applied for the 

regression model. 

   
1

, ,
n

j jF u v f u v  (4.3) 

The correlation model, ( , , , )u vS u v  , is a Gaussian model 

controlling the correlation between measurements accord-

ing to the distance between the measurement directions. 

Here, 
u  and 

v  act as scaling parameters in the uv-plane 

as explained below. 

This allows us to express Eq. (4.1) as a matrix expression 

  ( ) z Fβ Φ ρ α  (4.4) 

Where F is the regression matrix, i.e. the element 
ijF  repre-

sents the j’th polynomial 
jf  evaluated at the i’th measure-

ment direction  ,i i iu vx  

 ( ),  1,2, , ,  1,2, ,ij j iF f i m j n    x  

and β  is a vector with the polynomial coefficients 

 1 2, ,...,
T

n  β . 

The elements ij  of the correlation matrix Φ  are given as 

the correlation between the i’th and the j’th measurement 

direction according to the scaling parameters ρ  

 ( , , ),  i, j 1,2, ,ij i jr m   ρ x x . 

The correlation is expressed as a Gaussian correlation 

   
2 2

( , , ) exp – exp –i j u i j v i jr u u v v      
      

ρ x x  

  (4.5) 

The first term in Eq. (4.4) expresses a model of the meas-

ured field as a rather crude approximation by a polynomial 

with n coefficients β . To this is added the correlation func-

tions r  in the form of Gaussian hats of widths 
u  and 

v  

in u and v, respectively, and amplitudes adjusted by the 

weights 
1 2( , , , )T

m   α  such that the model agrees 

with the measured field values at the measurement points. 

This is a strict model which may be applied for interpola-

tion, but it does not take into account that the measurements 

may be defective in any way. To achieve a realistic fitting 

model, we therefore add a constant  , ( 0)   to the diag-

onal elements of , yielding the final model  

 

 (4.6) 

I  being the identity matrix of order m. The i’th diagonal 

element of Φ  is the autocorrelation for the i’th measure-

ment, 1ii   cf. Eq. (4.5). By adding   to the diagonal 

elements of the matrix, we give the model freedom to fol-

[ ( ) ]  z Fβ Φ ρ I α  



low a more likely path following, but not passing through, 

the measurement points. 

Computation of the parameters β , ρ , α  and   is by far the 

most tricky aspect of the implementation, as great care 

needs to be taken to ensure numerically stable and computa-

tionally efficient results. Principally β , the coefficients to 

the polynomial F(u,v) in Eq. (4.3), is first determined by 

solving 

2
min z Fβ  (4.7) 

This is an over-determined system fitting the polynomial 

F(u,v) to the measured data. The terms of Eq. (4.6) are then 

rearranged 

[ ( ) ]  z Fβ Φ ρ I α  (4.8) 

and α  is determined by a matrix inversion; ρ  and   may 

be determined automatically by a Maximum Likelihood 

Estimate, details may be found in [7,11]. The key point in 

the method is the application of a model, Eq. (4.6), which 

consists of a global regression part and a local correlation 

part. 

4.2.2  Predictor 

Having determined the model, we can predict the field val-

ue z at an arbitrary direction ( , )u vx  as [7, (2.16)] 

( , ) ( , ) ( , , )z u v F u v  r ρ x X α  (4.9) 

where F(u,v), the regression part, is given by Eq. (4.3). The 

last term, the correlation part, is the dot product of the vec-

tor r  – for which the j’th element ( , , )j jr ρ x x  is the value 

of the correlation, Eq. (4.5), between the actual direction x 

and the j’th measurement direction jx  – and the vector α  

with the weights of the correlation functions. 

This yields a prediction in the normalized space which has 

to be scaled back to the original space according to the 

normalization mentioned at the beginning of Section 4.2.1. 

This is simply carried out by multiplying by the standard 

deviation and next adding the average value of the meas-

ured field values.  

5  RESULTS 

The beam of the 353 GHz HFI detector is simulated meas-

uring Jupiter. The main-beam pattern is calculated by 

GRASP [6] applying Physical Optics. The dimples upon the 

sub-reflector are 10 µm whereby the grating lobes reach 38 

dB below the peak of the main beam. To this pattern is add-

ed a noise 42 dB (rms) below peak, S/N = 42 dB. The re-

sulting simulated pattern is shown in the 3D view in Figure 

6. 

 
Figure 6 - Simulated pattern with noise for the 353 GHz 

detector HFI-353-1, S/N = 42 dB. 

The main beam is cut off and the colour level is chosen in 

order to visualize the grating lobes. Applying the algorithm 

within a region of one of the grating lobes, and Kriging 

parameters as computed by the algorithm, yields the result 

shown in Figure 7 clearly demonstrating the reduction of 

the noise. 

 

Figure 7 - Noise filtering and Kriging fitting of the 

rightmost grating lobe of Figure 6. 

By reducing the signal-to-noise level the changes of the 

lobe shape and the peak level can be detected and the limit 

where the grating lobes are imperceptible found.  



Simulations with S/N = 38 dB shows a large change of the 

shape and peak level of the fitted pattern but the lobe direc-

tion is still correctly identified as seen in Figure 8. 

 

Figure 8 - Noise filtered and Kriging fitted grating lobe 

for the 353 GHz detector HFI-353-1, S/N = 38 dB. 

For S/N = 30 dB also the lobe direction is changed, Figure 

9,  and it is difficult to identify the lobe as a grating lobe, 

but the noise level is here 8 dB higher than the grating lobe 

peak. 

 
Figure 9 - Noise filtered and Kriging fitted grating lobe 

for the 353 GHz detector HFI-353-1, S/N = 30 dB. 

6.  CONCLUSIONS 

The algorithm presented for reconstructing an antenna grat-

ing lobe pattern from noisy measurements demonstrates 

considerably improved pattern information with a reduced 

noise level. The method starts with a crude filtering of the 

data utilizing the availability of a large amount of data. The 

key point of the method is, however, the following step with 

a Kriging fitting applying a global regression part overlaid 

with a local correlation part.  

The Kriging fitting hereby exploits the spatial dependency 

of the data, namely that it represents a beam – the main 

beam or a grating lobe – which is primarily fitted by a se-

cond order polynomial. In addition, the model allows devia-

tions from this primary model by including a correlation 

term representing the correlation between the measured 

points. 

With this method it has been demonstrated that grating 

lobes at a level 38 dB below main beam peak may be re-

constructed accurately when the noise level is at least 4 dB 

below the grating lobe level. When the noise level increases 

to the level of the grating lobes it is still possible to predict 

the position of the grating lobes but the beam width is in-

creased and the level decreased accordingly. Increasing the 

noise level further causes additionally a shift in the lobe 

position. 

Finally, although not discussed here, the runtimes are very 

reasonable, in the order of seconds, allowing a more inter-

active approach to the modelling process. In conclusion, the 

algorithm presented improves upon previous algorithms and 

will be vital in the in-flight geometry retrieval of the Planck 

space telescope.  
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